These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 10858582)

  • 1. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts.
    Gunde-Cimermana N; Zalarb P; de Hoogc S ; Plemenitasd A
    FEMS Microbiol Ecol; 2000 Jun; 32(3):235-240. PubMed ID: 10858582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungi in salterns.
    Chung D; Kim H; Choi HS
    J Microbiol; 2019 Sep; 57(9):717-724. PubMed ID: 31452042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments.
    Kogej T; Ramos J; Plemenitas A; Gunde-Cimerman N
    Appl Environ Microbiol; 2005 Nov; 71(11):6600-5. PubMed ID: 16269687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions.
    Kogej T; Wheeler MH; Lanisnik Rizner T; Gunde-Cimerman N
    FEMS Microbiol Lett; 2004 Mar; 232(2):203-9. PubMed ID: 15033240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mycobiota of the salterns.
    Zajc J; Zalar P; Plemenitaš A; Gunde-Cimerman N
    Prog Mol Subcell Biol; 2012; 53():133-58. PubMed ID: 22222830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing and Responding to Hypersaline Conditions and the HOG Signal Transduction Pathway in Fungi Isolated from Hypersaline Environments:
    Plemenitaš A
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi.
    Turk M; Abramović Z; Plemenitas A; Gunde-Cimerman N
    FEMS Yeast Res; 2007 Jun; 7(4):550-7. PubMed ID: 17298474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns.
    Lenassi M; Vaupotic T; Gunde-Cimerman N; Plemenitas A
    Saline Syst; 2007 Mar; 3():3. PubMed ID: 17349032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi.
    Turk M; Méjanelle L; Sentjurc M; Grimalt JO; Gunde-Cimerman N; Plemenitas A
    Extremophiles; 2004 Feb; 8(1):53-61. PubMed ID: 15064990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halotolerant and halophilic fungi.
    Gunde-Cimerman N; Ramos J; Plemenitas A
    Mycol Res; 2009 Nov; 113(Pt 11):1231-41. PubMed ID: 19747974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma.
    Kogej T; Gorbushina AA; Gunde-Cimerman N
    Mycol Res; 2006 Jun; 110(Pt 6):713-24. PubMed ID: 16765585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of 17beta-hydroxysteroid dehydrogenases in mesophilic and extremophilic yeast.
    Rizner TL; Adamski J; Zakelj-Mavric M
    Steroids; 2001 Jan; 66(1):49-54. PubMed ID: 11090658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal adaptation to extremely high salt concentrations.
    Gostinčar C; Lenassi M; Gunde-Cimerman N; Plemenitaš A
    Adv Appl Microbiol; 2011; 77():71-96. PubMed ID: 22050822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments.
    Méjanelle L; Lòpez JF; Gunde-Cimerman N; Grimalt JO
    J Lipid Res; 2001 Mar; 42(3):352-8. PubMed ID: 11254746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance.
    Plemenitas A; Vaupotic T; Lenassi M; Kogej T; Gunde-Cimerman N
    Stud Mycol; 2008; 61():67-75. PubMed ID: 19287528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii.
    Petrovic U; Gunde-Cimerman N; Plemenitas A
    FEMS Microbiol Lett; 1999 Nov; 180(2):325-30. PubMed ID: 10556729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of Halophilic Extremozymes by Mechanical Cell Disruption.
    Primožič M; Čolnik M; Knez Ž; Leitgeb M
    Acta Chim Slov; 2019 Feb; 66(1):217-228. PubMed ID: 33855479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment.
    Kejžar A; Gobec S; Plemenitaš A; Lenassi M
    Fungal Biol; 2013 May; 117(5):368-79. PubMed ID: 23719222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance.
    Turk M; Plemenitaš A; Gunde-Cimerman N
    Fungal Biol; 2011 Oct; 115(10):950-8. PubMed ID: 21944207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Proteolytic Activity of a Halophilic
    Chung D; Yu WJ; Lim JY; Kang NS; Kwon YM; Choi G; Bae SS; Cho K; Lee DS
    Microorganisms; 2021 Dec; 10(1):. PubMed ID: 35056479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.