These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10859124)

  • 1. Neutron-Capture Element Abundances in the Globular Cluster M15.
    Sneden C; Johnson J; Kraft RP; Smith GH; Cowan JJ; Bolte MS
    Astrophys J; 2000 Jun; 536(2):L85-L88. PubMed ID: 10859124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abundances of Neutron-capture Elements in 62 Stars in the Globular Cluster Messier 15.
    Cabrera Garcia J; Sakari CM; Roederer IU; Evans DW; Silva P; Mateo M; Song YY; Kremin A; Bailey JI; Walker MG
    Astrophys J; 2024 Jun; 967(2):101. PubMed ID: 38799617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of Multiple r-Process Sites in the Early Galaxy: New Observations of CS 22892-052.
    Sneden C; Cowan JJ; Ivans II; Fuller GM; Burles S; Beers TC; Lawler JE
    Astrophys J; 2000 Apr; 533(2):L139-L142. PubMed ID: 10770709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotations and Abundances of Blue Horizontal-Branch Stars in Globular Cluster M15.
    Behr BB; Cohen JG; McCarthy JK
    Astrophys J; 2000 Mar; 531(1):L37-L40. PubMed ID: 10673409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genesis of the heaviest elements in the Milky Way Galaxy.
    Sneden C; Cowan JJ
    Science; 2003 Jan; 299(5603):70-5. PubMed ID: 12511642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic diffusion and mixing in old stars - VIII. Chemical abundance variations in the globular cluster M4 (NGC 6121).
    Nordlander T; Gruyters P; Richard O; Korn AJ
    Mon Not R Astron Soc; 2024 Feb; 527(4):12120-12139. PubMed ID: 38223557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imprints of fast-rotating massive stars in the Galactic Bulge.
    Chiappini C; Frischknecht U; Meynet G; Hirschi R; Barbuy B; Pignatari M; Decressin T; Maeder A
    Nature; 2011 Apr; 472(7344):454-7. PubMed ID: 21525928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Element abundance patterns in stars indicate fission of nuclei heavier than uranium.
    Roederer IU; Vassh N; Holmbeck EM; Mumpower MR; Surman R; Cowan JJ; Beers TC; Ezzeddine R; Frebel A; Hansen TT; Placco VM; Sakari CM
    Science; 2023 Dec; 382(6675):1177-1180. PubMed ID: 38060658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron capture and stellar synthesis of heavy elements.
    Gibbons JH; Macklin RL
    Science; 1967 May; 156(3778):1039-49. PubMed ID: 17774043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temperature and chronology of heavy-element synthesis in low-mass stars.
    Neyskens P; Van Eck S; Jorissen A; Goriely S; Siess L; Plez B
    Nature; 2015 Jan; 517(7533):174-6. PubMed ID: 25567282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of three lead-rich stars.
    Van Eck S; Goriely S; Jorissen A; Plez B
    Nature; 2001 Aug; 412(6849):793-5. PubMed ID: 11518958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R-process enrichment from a single event in an ancient dwarf galaxy.
    Ji AP; Frebel A; Chiti A; Simon JD
    Nature; 2016 Mar; 531(7596):610-3. PubMed ID: 27001693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.
    Dauphas N
    Nature; 2005 Jun; 435(7046):1203-5. PubMed ID: 15988518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of strontium in the merger of two neutron stars.
    Watson D; Hansen CJ; Selsing J; Koch A; Malesani DB; Andersen AC; Fynbo JPU; Arcones A; Bauswein A; Covino S; Grado A; Heintz KE; Hunt L; Kouveliotou C; Leloudas G; Levan AJ; Mazzali P; Pian E
    Nature; 2019 Oct; 574(7779):497-500. PubMed ID: 31645733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early solar system. Stellar origin of the ¹⁸²Hf cosmochronometer and the presolar history of solar system matter.
    Lugaro M; Heger A; Osrin D; Goriely S; Zuber K; Karakas AI; Gibson BK; Doherty CL; Lattanzio JC; Ott U
    Science; 2014 Aug; 345(6197):650-3. PubMed ID: 25104382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The abundance of heavy elements in interstellar gas.
    Cardelli JA
    Science; 1994 Jul; 265(5169):209-13. PubMed ID: 17750659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radioisotopes and the history of nucleosynthesis in the galaxy.
    Hohenberg CM
    Science; 1969 Oct; 166(3902):212-5. PubMed ID: 17731483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus-bearing molecules PO and PN at the edge of the Galaxy.
    Koelemay LA; Gold KR; Ziurys LM
    Nature; 2023 Nov; 623(7986):292-295. PubMed ID: 37938703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. r-Process in Neutron Star Mergers.
    Freiburghaus C; Rosswog S; Thielemann F
    Astrophys J; 1999 Nov; 525(2):L121-L124. PubMed ID: 10525469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nearby neutron-star merger explains the actinide abundances in the early Solar System.
    Bartos I; Marka S
    Nature; 2019 May; 569(7754):85-88. PubMed ID: 31043731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.