BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 10859938)

  • 1. Studies on karyotype evolution in higher primates in relation to human chromosome 14 and 9 by comparative mapping of immunoglobulin C epsilon genes with fluorescence in situ hybridization.
    Tanabe H
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999; (117):77-90. PubMed ID: 10859938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative mapping of the immunoglobulin C epsilon 1 gene (IGHE) in five species of nonhuman primates by fluorescence in situ hybridization.
    Tanabe H; Ishida T; Ueda S; Sofuni T; Mizusawa H
    Cytogenet Cell Genet; 1995; 70(3-4):239-42. PubMed ID: 7789180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular anatomy of human chromosome 9: comparative mapping of the immunoglobulin processed pseudogene C epsilon 3 (IGHEP2) in primates.
    Tanabe H; Ishida T; Ueda S; Sofuni T; Mizusawa H
    Cytogenet Cell Genet; 1996; 73(1-2):92-6. PubMed ID: 8646893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes).
    Kehrer-Sawatzki H; Sandig C; Chuzhanova N; Goidts V; Szamalek JM; Tänzer S; Müller S; Platzer M; Cooper DN; Hameister H
    Hum Mutat; 2005 Jan; 25(1):45-55. PubMed ID: 15580561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative high-resolution mapping of human and primate chromosomes by fluorescence in situ hybridization.
    Ried T; Arnold N; Ward DC; Wienberg J
    Genomics; 1993 Nov; 18(2):381-6. PubMed ID: 8288242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees.
    Nickerson E; Nelson DL
    Genomics; 1998 Jun; 50(3):368-72. PubMed ID: 9676431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary history of human chromosome 7.
    Müller S; Finelli P; Neusser M; Wienberg J
    Genomics; 2004 Sep; 84(3):458-67. PubMed ID: 15498453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntenic groups between human chromosome 9 and Indian muntjac chromosomes revealed by ZOO-FISH.
    Sensi A; Gruppioni R; Bonfatti A; Rubini M; Giunta C; Fontana F
    Eur J Histochem; 1995; 39(4):317-20. PubMed ID: 8835186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal homologies between Cebus and Ateles (primates) based on ZOO-FISH and G-banding comparisons.
    García F; Ruiz-Herrera A; Egozcue J; Ponsà M; Garcia M
    Am J Primatol; 2002 Aug; 57(4):177-88. PubMed ID: 12210670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16.
    Goidts V; Szamalek JM; de Jong PJ; Cooper DN; Chuzhanova N; Hameister H; Kehrer-Sawatzki H
    Genome Res; 2005 Sep; 15(9):1232-42. PubMed ID: 16140991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative cytogenetics of human chromosome 3q21.3 reveals a hot spot for ectopic recombination in hominoid evolution.
    Yue Y; Grossmann B; Ferguson-Smith M; Yang F; Haaf T
    Genomics; 2005 Jan; 85(1):36-47. PubMed ID: 15607420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescene in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system.
    Bigoni F; Koehler U; Stanyon R; Ishida T; Wienberg J
    Am J Phys Anthropol; 1997 Mar; 102(3):315-27. PubMed ID: 9098501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes.
    Consigliere S; Stanyon R; Koehler U; Arnold N; Wienberg J
    Am J Primatol; 1998; 46(2):119-33. PubMed ID: 9773675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization.
    Dumas F; Bigoni F; Stone G; Sineo L; Stanyon R
    Chromosome Res; 2005; 13(1):85-96. PubMed ID: 15791414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional assignment of the human immunoglobulin processed pseudogene C epsilon 3 (IGHEP2) to 9p24.2-->p24.1 by fluorescence in situ hybridization.
    Tanabe H; Ishida T; Ueda S; Sofuni T; Mizusawa H
    Cytogenet Cell Genet; 1994; 66(2):93-5. PubMed ID: 8287690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative genome map of human and cattle.
    Solinas-Toldo S; Lengauer C; Fries R
    Genomics; 1995 Jun; 27(3):489-96. PubMed ID: 7558031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New aspects of chromosomal evolution in the gorilla and the orangutan.
    Weise A; Gross M; Schmidt S; Reichelt F; Claussen U; Liehr T
    Int J Mol Med; 2007 Mar; 19(3):437-43. PubMed ID: 17273792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution.
    Wienberg J
    Cytogenet Genome Res; 2005; 108(1-3):139-60. PubMed ID: 15545725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids.
    Frönicke L; Wienberg J
    Mamm Genome; 2001 Jun; 12(6):442-9. PubMed ID: 11353391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey.
    Stanyon R; Consigliere S; Müller S; Morescalchi A; Neusser M; Wienberg J
    Am J Primatol; 2000 Feb; 50(2):95-107. PubMed ID: 10676707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.