These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 10860568)

  • 1. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters.
    Böhm KJ; Stracke R; Unger E
    Cell Biol Int; 2000; 24(6):335-41. PubMed ID: 10860568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity.
    Böhm KJ; Stracke R; Baum M; Zieren M; Unger E
    FEBS Lett; 2000 Jan; 466(1):59-62. PubMed ID: 10648812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in the neck linker of kinesin explain the load dependence of the motor's mechanical cycle.
    Mogilner A; Fisher AJ; Baskin RJ
    J Theor Biol; 2001 Jul; 211(2):143-57. PubMed ID: 11419956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular motors. Switching on kinesin.
    Schliwa M; Woehlke G
    Nature; 2001 May; 411(6836):424-5. PubMed ID: 11373655
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinesin-driven microtubule motility in the presence of alkaline-earth metal ions: indication for a calcium ion-dependent motility.
    Böhm KJ; Steinmetzer P; Daniel A; Baum M; Vater W; Unger E
    Cell Motil Cytoskeleton; 1997; 37(3):226-31. PubMed ID: 9227852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics processivity and the direction of motion of Ncd.
    Pechatnikova E; Taylor EW
    Biophys J; 1999 Aug; 77(2):1003-16. PubMed ID: 10423445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule-kinesin interface mutants reveal a site critical for communication.
    Klumpp LM; Brendza KM; Gatial JE; Hoenger A; Saxton WM; Gilbert SP
    Biochemistry; 2004 Mar; 43(10):2792-803. PubMed ID: 15005614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch-based mechanism of kinesin motors.
    Kikkawa M; Sablin EP; Okada Y; Yajima H; Fletterick RJ; Hirokawa N
    Nature; 2001 May; 411(6836):439-45. PubMed ID: 11373668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical analysis of a processive molecular motor: the conventional kinesin.
    Ciudad A; Lacasta AM; Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031918. PubMed ID: 16241493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural change in the kinesin motor protein that drives motility.
    Rice S; Lin AW; Safer D; Hart CL; Naber N; Carragher BO; Cain SM; Pechatnikova E; Wilson-Kubalek EM; Whittaker M; Pate E; Cooke R; Taylor EW; Milligan RA; Vale RD
    Nature; 1999 Dec; 402(6763):778-84. PubMed ID: 10617199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Working strokes by single molecules of the kinesin-related microtubule motor ncd.
    deCastro MJ; Fondecave RM; Clarke LA; Schmidt CF; Stewart RJ
    Nat Cell Biol; 2000 Oct; 2(10):724-9. PubMed ID: 11025663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of force, velocity, and processivity of single kinesin molecules.
    Kawaguchi K; Ishiwata S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):895-9. PubMed ID: 10860848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of sea urchin egg kinesin-driven microtubule motility.
    Cohn SA; Ingold AL; Scholey JM
    J Biol Chem; 1989 Mar; 264(8):4290-7. PubMed ID: 2522443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of diffusion-controlled limit for processivity of dimeric kinesin head domains.
    Hackney DD
    Biophys J; 1995 Apr; 68(4 Suppl):267S-269S; discussion 269S-270S. PubMed ID: 7787088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-velocity relationships in kinesin-driven motility.
    Hall K; Cole DG; Yeh Y; Scholey JM; Baskin RJ
    Nature; 1993 Jul; 364(6436):457-9. PubMed ID: 8332217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements.
    Hua W; Chung J; Gelles J
    Science; 2002 Feb; 295(5556):844-8. PubMed ID: 11823639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of tail-mediated inhibition of kinesin activities studied using synthetic peptides.
    Yonekura H; Nomura A; Ozawa H; Tatsu Y; Yumoto N; Uyeda TQ
    Biochem Biophys Res Commun; 2006 May; 343(2):420-7. PubMed ID: 16546134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinesin moves by an asymmetric hand-over-hand mechanism.
    Asbury CL; Fehr AN; Block SM
    Science; 2003 Dec; 302(5653):2130-4. PubMed ID: 14657506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between kinesin, microtubules, and microtubule-associated protein 2.
    von Massow A; Mandelkow EM; Mandelkow E
    Cell Motil Cytoskeleton; 1989; 14(4):562-71. PubMed ID: 2533884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule movement by a biotinated kinesin bound to streptavidin-coated surface.
    Berliner E; Mahtani HK; Karki S; Chu LF; Cronan JE; Gelles J
    J Biol Chem; 1994 Mar; 269(11):8610-5. PubMed ID: 8132586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.