BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10860703)

  • 1. Optimal stopover decisions under wind influence: the effects of correlated winds.
    Weber TP; Hedenström A
    J Theor Biol; 2000 Jul; 205(1):95-104. PubMed ID: 10860703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of wind flow on stopover decisions: the case of the reed warbler Acrocephalus scirpaceus in the Western Mediterranean.
    Barriocanal C; Montserrat D; Robson D
    Int J Biometeorol; 2002 Sep; 46(4):192-6. PubMed ID: 12242475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the effect of wind on flight: pitfalls and solutions.
    Shamoun-Baranes J; van Loon E; Liechti F; Bouten W
    J Exp Biol; 2007 Jan; 210(Pt 1):82-90. PubMed ID: 17170151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.
    Schmaljohann H; Liechti F
    J Exp Biol; 2009 Nov; 212(Pt 22):3633-42. PubMed ID: 19880724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents.
    Stefanescu C; Alarcón M; Avila A
    J Anim Ecol; 2007 Sep; 76(5):888-98. PubMed ID: 17714267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot.
    Jenni-Eiermann S; Hasselquist D; Lindström A; Koolhaas A; Piersma T
    Gen Comp Endocrinol; 2009; 164(2-3):101-6. PubMed ID: 19481083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K; Kranstauber B; Weinzierl R; Griffin L; Rees EC; Cabot D; Cruz S; Proaño C; Takekawa JY; Newman SH; Waldenström J; Bengtsson D; Kays R; Wikelski M; Bohrer G
    Mov Ecol; 2013; 1(1):4. PubMed ID: 25709818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced body mass gain in small passerines during migratory stopover under simulated heat wave conditions.
    Bauchinger U; McWilliams SR; Pinshow B
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):374-81. PubMed ID: 21172449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carrying large fuel loads during sustained bird flight is cheaper than expected.
    Kvist A; Lindström A ; Green M; Piersma T; Visser GH
    Nature; 2001 Oct; 413(6857):730-2. PubMed ID: 11607031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.
    Aurbach A; Schmid B; Liechti F; Chokani N; Abhari R
    J Theor Biol; 2018 Oct; 454():126-138. PubMed ID: 29874554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic power of European starlings Sturnus vulgaris during flight in a wind tunnel, estimated from heat transfer modelling, doubly labelled water and mask respirometry.
    Ward S; Möller U; Rayner JM; Jackson DM; Nachtigall W; Speakman JR
    J Exp Biol; 2004 Nov; 207(Pt 24):4291-8. PubMed ID: 15531650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts.
    Åkesson S; Bianco G; Hedenström A
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.
    Yonehara Y; Goto Y; Yoda K; Watanuki Y; Young LC; Weimerskirch H; Bost CA; Sato K
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9039-44. PubMed ID: 27457932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and fuel efficient? Optimal use of wind by flying albatrosses.
    Weimerskirch H; Guionnet T; Martin J; Shaffer SA; Costa DP
    Proc Biol Sci; 2000 Sep; 267(1455):1869-74. PubMed ID: 11052538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.