BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 10860855)

  • 1. Porphyrin biosynthesis intermediates are not regulating delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Moretti MB; Garcia SC; Batlle A
    Biochem Biophys Res Commun; 2000 Jun; 272(3):946-50. PubMed ID: 10860855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. delta-Aminolevulinic acid uptake is mediated by the gamma-aminobutyric acid-specific permease UGA4.
    Bermúdez Moretti M; Correa García S; Ramos E; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):519-23. PubMed ID: 8828907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA uptake in a Saccharomyces cerevisiae strain.
    Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory role of ALA-S and ALA-D in a haem-deficient mutant of Saccharomyces cerevisiae.
    Araujo LS; Lombardo ME; Del C Batlle AM
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):591-5. PubMed ID: 9678894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of ALA-S and ALA-D in regulating porphyrin biosynthesis in a normal and a HEM R+ mutant strain of Saccharomyces cerevisiae.
    Correa García S; Bermúdez Moretti M; Cardalda C; Rossetti MV; Batlle AM
    Yeast; 1993 Feb; 9(2):165-73. PubMed ID: 8465603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and nitrogen sources regulate delta-aminolevulinic acid and gamma-aminobutyric acid transport in Saccharomyces cerevisiae.
    Correa García S; Bermúdez Moretti M; Ramos E; Batlle A
    Int J Biochem Cell Biol; 1997; 29(8-9):1097-101. PubMed ID: 9416005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin.
    Ohgari Y; Nakayasu Y; Kitajima S; Sawamoto M; Mori H; Shimokawa O; Matsui H; Taketani S
    Biochem Pharmacol; 2005 Dec; 71(1-2):42-9. PubMed ID: 16288996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions.
    Bermúdez Moretti M; Correa García S; Batlle A
    Cell Mol Biol (Noisy-le-grand); 1998 Jun; 44(4):585-90. PubMed ID: 9678893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the UGA4 gene encoding the delta-aminolevulinic and gamma-aminobutyric acids permease in Saccharomyces cerevisiae is controlled by amino acid-sensing systems.
    Bermudez Moretti M; Perullini AM; Batlle A; Correa Garcia S
    Arch Microbiol; 2005 Nov; 184(2):137-40. PubMed ID: 16187100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p.
    Garcia SC; Moretti MB; Batlle A
    FEMS Microbiol Lett; 2000 Mar; 184(2):219-24. PubMed ID: 10713424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of porphyrin biosynthesis in yeast. Level of delta-aminolevulinic acid in porphyrin mutants of Saccharomyces cerevisiae.
    Malamud DR; Padrão GR; Borralho LM; Arrese M; Panek AD; Mattoon JR
    Braz J Med Biol Res; 1983 Oct; 16(3):203-13. PubMed ID: 6317106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porphyrin biosynthesis from ALA and PBG by human erythrocytes in porphyrin disorders. Kinetic studies of the isomer series I and III.
    Schermuly E; Doss M
    Ann Clin Res; 1976; 8 Suppl 17():92-102. PubMed ID: 1008503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of porphyrin and irradiation on heme biosynthetic pathway in endothelial cells.
    Lim HW; Behar S; He D
    Photodermatol Photoimmunol Photomed; 1994 Feb; 10(1):17-21. PubMed ID: 8180096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae.
    Uemura T; Tomonari Y; Kashiwagi K; Igarashi K
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1082-7. PubMed ID: 14985124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of heme biosynthesis.
    Poulson R
    Ann Clin Res; 1976; 8 Suppl 17():56-63. PubMed ID: 188375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that 4-aminobutyric acid and 5-aminolevulinic acid share a common transport system into Saccharomyces cerevisiae.
    Bermúdez Moretti M; Correa García SR; Chianelli MS; Ramos EH; Mattoon JR; Batlle A
    Int J Biochem Cell Biol; 1995 Feb; 27(2):169-73. PubMed ID: 7767784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead toxicity and heme biosynthesis.
    Lubran MM
    Ann Clin Lab Sci; 1980; 10(5):402-13. PubMed ID: 6999974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the activities of the protoheme-synthesizing system during the growth of yeast under different conditions.
    Labbe-Bois R; Volland C
    Arch Biochem Biophys; 1977 Mar; 179(2):565-77. PubMed ID: 192152
    [No Abstract]   [Full Text] [Related]  

  • 19. [Porphobilinogen synthase activity and porphyrin biosynthesis in the erythrocytes after incubation with delta-aminolevulinic acid in pernicious anemia patients].
    Arsov Ts; Georgiev G
    Vutr Boles; 1987; 26(2):91-5. PubMed ID: 3604204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotransmitter transporter family including SLC6A6 and SLC6A13 contributes to the 5-aminolevulinic acid (ALA)-induced accumulation of protoporphyrin IX and photodamage, through uptake of ALA by cancerous cells.
    Tran TT; Mu A; Adachi Y; Adachi Y; Taketani S
    Photochem Photobiol; 2014; 90(5):1136-43. PubMed ID: 24842606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.