BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10860860)

  • 1. The LIM-domain protein FHL1 (SLIM 1) exhibits functional regulation in skeletal muscle.
    Loughna PT; Mason P; Bayol S; Brownson C
    Mol Cell Biol Res Commun; 2000 Mar; 3(3):136-40. PubMed ID: 10860860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rigid spine syndrome caused by a novel mutation in four-and-a-half LIM domain 1 gene (FHL1).
    Shalaby S; Hayashi YK; Goto K; Ogawa M; Nonaka I; Noguchi S; Nishino I
    Neuromuscul Disord; 2008 Dec; 18(12):959-61. PubMed ID: 18952429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of mutations within the C terminus of the FHL1 gene.
    Schoser B; Goebel HH; Janisch I; Quasthoff S; Rother J; Bergmann M; Müller-Felber W; Windpassinger C
    Neurology; 2009 Aug; 73(7):543-51. PubMed ID: 19687455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinnervation-induced alterations in rat skeletal muscle.
    Zhou Z; Cornelius CP; Eichner M; Bornemann A
    Neurobiol Dis; 2006 Sep; 23(3):595-602. PubMed ID: 16877003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Serhl, a new member of the serine hydrolase family induced by passive stretch of skeletal muscle in vivo.
    Sadusky TJ; Kemp TJ; Simon M; Carey N; Coulton GR
    Genomics; 2001 Apr; 73(1):38-49. PubMed ID: 11352564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle.
    Morgan MJ; Madgwick AJ
    Biochem Biophys Res Commun; 1999 Feb; 255(2):245-50. PubMed ID: 10049693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel stretch-responsive skeletal muscle gene (Smpx).
    Kemp TJ; Sadusky TJ; Simon M; Brown R; Eastwood M; Sassoon DA; Coulton GR
    Genomics; 2001 Mar; 72(3):260-71. PubMed ID: 11401441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects.
    Boonyarom O; Inui K
    Acta Physiol (Oxf); 2006 Oct; 188(2):77-89. PubMed ID: 16948795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load dependent.
    Spangenburg EE; Abraha T; Childs TE; Pattison JS; Booth FW
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E340-50. PubMed ID: 12397024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle.
    Criswell DS; Carson JA; Booth FW
    J Gravit Physiol; 1996 Sep; 3(2):58-60. PubMed ID: 11540283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.
    Baldwin KM; Caiozzo VJ; Haddad F; Baker MJ; Herrick RE
    J Gravit Physiol; 1994 May; 1(1):P8-11. PubMed ID: 11538774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FBXO40, a gene encoding a novel muscle-specific F-box protein, is upregulated in denervation-related muscle atrophy.
    Ye J; Zhang Y; Xu J; Zhang Q; Zhu D
    Gene; 2007 Dec; 404(1-2):53-60. PubMed ID: 17928169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing body myopathy and other FHL1-related muscular disorders.
    Schessl J; Feldkirchner S; Kubny C; Schoser B
    Semin Pediatr Neurol; 2011 Dec; 18(4):257-63. PubMed ID: 22172421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein.
    Kemp TJ; Sadusky TJ; Saltisi F; Carey N; Moss J; Yang SY; Sassoon DA; Goldspink G; Coulton GR
    Genomics; 2000 Jun; 66(3):229-41. PubMed ID: 10873377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependent changes in bovine skeletal muscle transcriptomic profile.
    Sadkowski T; Jank M; Oprzadek J; Motyl T
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 7():95-110. PubMed ID: 17228098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of differentially expressed genes in denervated muscle.
    Tang H; Cheung WM; Ip FC; Ip NY
    Mol Cell Neurosci; 2000 Aug; 16(2):127-40. PubMed ID: 10924256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myostatin and its precursor protein are increased in the skeletal muscle of patients with Type-II muscle fibre atrophy.
    Wójcik S; Nogalska A; Engel WK; Askanas V
    Folia Morphol (Warsz); 2008 Feb; 67(1):6-12. PubMed ID: 18335407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata (Gunther 1867).
    Symonds BL; James RS; Franklin CE
    J Exp Biol; 2007 Mar; 210(Pt 5):825-35. PubMed ID: 17297142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral amino acid supplementation counteracts age-induced sarcopenia in elderly rats.
    Pansarasa O; Flati V; Corsetti G; Brocca L; Pasini E; D'Antona G
    Am J Cardiol; 2008 Jun; 101(11A):35E-41E. PubMed ID: 18514625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats.
    McClung JM; Davis JM; Carson JA
    Exp Physiol; 2007 Jan; 92(1):219-32. PubMed ID: 16990367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.