These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 10860957)

  • 21. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolution of angiosperm mitochondrial introns and exons.
    Laroche J; Li P; Maggia L; Bousquet J
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5722-7. PubMed ID: 9159140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Widespread horizontal transfer of mitochondrial genes in flowering plants.
    Bergthorsson U; Adams KL; Thomason B; Palmer JD
    Nature; 2003 Jul; 424(6945):197-201. PubMed ID: 12853958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants.
    Cho Y; Mower JP; Qiu YL; Palmer JD
    Proc Natl Acad Sci U S A; 2004 Dec; 101(51):17741-6. PubMed ID: 15598738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The draft mitochondrial genome of Magnolia biondii and mitochondrial phylogenomics of angiosperms.
    Dong S; Chen L; Liu Y; Wang Y; Zhang S; Yang L; Lang X; Zhang S
    PLoS One; 2020; 15(4):e0231020. PubMed ID: 32294100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms.
    Löhne C; Borsch T
    Mol Biol Evol; 2005 Feb; 22(2):317-32. PubMed ID: 15496557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes.
    Adams KL; Song K; Roessler PG; Nugent JM; Doyle JL; Doyle JJ; Palmer JD
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13863-8. PubMed ID: 10570164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A global picture of tRNA genes in plant genomes.
    Michaud M; Cognat V; Duchêne AM; Maréchal-Drouard L
    Plant J; 2011 Apr; 66(1):80-93. PubMed ID: 21443625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. History of plastid DNA insertions reveals weak deletion and at mutation biases in angiosperm mitochondrial genomes.
    Sloan DB; Wu Z
    Genome Biol Evol; 2014 Nov; 6(12):3210-21. PubMed ID: 25416619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms.
    Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF
    Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants.
    Adams KL; Daley DO; Qiu YL; Whelan J; Palmer JD
    Nature; 2000 Nov; 408(6810):354-7. PubMed ID: 11099041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants.
    Turmel M; Otis C; Lemieux C
    Plant Cell; 2003 Aug; 15(8):1888-903. PubMed ID: 12897260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia.
    Vaughn JC; Mason MT; Sper-Whitis GL; Kuhlman P; Palmer JD
    J Mol Evol; 1995 Nov; 41(5):563-72. PubMed ID: 7490770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution.
    Adams KL; Rosenblueth M; Qiu YL; Palmer JD
    Genetics; 2001 Jul; 158(3):1289-300. PubMed ID: 11454775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs.
    Wolfe KH; Li WH; Sharp PM
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):9054-8. PubMed ID: 3480529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes.
    Korovesi AG; Ntertilis M; Kouvelis VN
    Mol Phylogenet Evol; 2018 Oct; 127():74-86. PubMed ID: 29763662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus.
    Adams KL; Palmer JD
    Mol Phylogenet Evol; 2003 Dec; 29(3):380-95. PubMed ID: 14615181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer.
    Gandini CL; Sanchez-Puerta MV
    Sci Rep; 2017 Mar; 7():43402. PubMed ID: 28262720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size.
    Skippington E; Barkman TJ; Rice DW; Palmer JD
    BMC Plant Biol; 2017 Feb; 17(1):49. PubMed ID: 28222679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications.
    Dombrovska O; Qiu YL
    Mol Phylogenet Evol; 2004 Jul; 32(1):246-63. PubMed ID: 15186811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.