BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10861220)

  • 1. The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves.
    Williams JP; Imperial V; Khan MU; Hodson JN
    Biochem J; 2000 Jul; 349(Pt 1):127-33. PubMed ID: 10861220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Growth Temperature on the Biosynthesis of Chloroplastic Galactosyldiacylglycerol Molecular Species in Brassica napus Leaves.
    Johnson G; Williams JP
    Plant Physiol; 1989 Nov; 91(3):924-9. PubMed ID: 16667158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature-induced fatty acid desaturation in Brassica napus: thermal deactivation and reactivation of the process.
    Williams JP; Khan MU; Wong D
    Biochim Biophys Acta; 1992 Oct; 1128(2-3):275-9. PubMed ID: 1420301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low temperature-induced fatty acid desaturation in Brassica napus: thermal lability of the process.
    Williams JP; Williams K; Khan MU
    Biochim Biophys Acta; 1992 Apr; 1125(1):62-7. PubMed ID: 1567908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling.
    Pollard M; Ohlrogge J
    Plant Physiol; 1999 Dec; 121(4):1217-26. PubMed ID: 10594108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.
    Lee KR; In Sohn S; Jung JH; Kim SH; Roh KH; Kim JB; Suh MC; Kim HU
    Gene; 2013 Dec; 531(2):253-62. PubMed ID: 24029080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the 14C-labelling of molecular species of 3-monogalactosyl-1,2-diacylglycerol in leaves of Vicia faba treated with compound San 9785.
    Lem NW; Williams JP
    Biochem J; 1983 Feb; 209(2):513-8. PubMed ID: 6847632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthesis of triacylglycerols in microsomal preparations of developing cotyledons of sunflower (Helianthus annuus L.).
    Stymne S; Stobart AK
    Biochem J; 1984 Jun; 220(2):481-8. PubMed ID: 6743281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa.
    Lee MS; Guerra DJ
    Arch Biochem Biophys; 1994 Nov; 315(1):203-11. PubMed ID: 7979400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of exogenous long-chain fatty acids by spinach leaves.
    Roughan PG; Thompson GA; Cho SH
    Arch Biochem Biophys; 1987 Dec; 259(2):481-96. PubMed ID: 3426240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of fatty acid distribution in phosphatidylcholine of spinach leaves.
    Devor KA; Mudd JB
    J Lipid Res; 1971 Jul; 12(4):412-9. PubMed ID: 5164092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways for fatty acid elongation and desaturation in Neurospora crassa.
    McKeon TA; Goodrich-Tanrikulu M; Lin JT; Stafford A
    Lipids; 1997 Jan; 32(1):1-5. PubMed ID: 9075186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and Temporal Mapping of Key Lipid Species in
    Woodfield HK; Sturtevant D; Borisjuk L; Munz E; Guschina IA; Chapman K; Harwood JL
    Plant Physiol; 2017 Apr; 173(4):1998-2009. PubMed ID: 28188274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galactolipid Synthesis in Vicia faba Leaves: II. Formation and Desaturation of Long Chain Fatty Acids in Phosphatidylcholine, Phosphatidylglycerol, and the Galactolipids.
    Williams JP; Watson GR; Leung SP
    Plant Physiol; 1976 Feb; 57(2):179-84. PubMed ID: 16659446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylcholine de novo synthesis and modification are carried out sequentially in HL60 cells: evidence from mass isotopomer distribution analysis.
    Tserng KY; Griffin RL
    Biochemistry; 2004 Jun; 43(25):8125-35. PubMed ID: 15209508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis.
    Sato N; Moriyama T
    Eukaryot Cell; 2007 Jun; 6(6):1006-17. PubMed ID: 17416897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos.
    Schwender J; Ohlrogge JB
    Plant Physiol; 2002 Sep; 130(1):347-61. PubMed ID: 12226514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana.
    Browse J; Warwick N; Somerville CR; Slack CR
    Biochem J; 1986 Apr; 235(1):25-31. PubMed ID: 3741384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid metabolism in boar spermatozoa and role of diacylglycerol species in the de novo formation of phosphatidylcholine.
    Vazquez JM; Roldan ER
    Mol Reprod Dev; 1997 May; 47(1):105-12. PubMed ID: 9110321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerolipid synthesis in Avena leaves during greening of etiolated seedlings II. α-Linolenic acid synthesis.
    Ohnishi J; Yamada M
    Plant Cell Physiol; 1980 Dec; 21(8):1607-18. PubMed ID: 25385976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.