BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10861590)

  • 1. Synergistic effect of low-frequency ultrasound and sodium lauryl sulfate on transdermal transport.
    Mitragotri S; Ray D; Farrell J; Tang H; Yu B; Kost J; Blankschtein D; Langer R
    J Pharm Sci; 2000 Jul; 89(7):892-900. PubMed ID: 10861590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of ultrasound-SLS synergism during enhanced transdermal transport.
    Lavon I; Grossman N; Kost J
    J Control Release; 2005 Oct; 107(3):484-94. PubMed ID: 16165244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.
    Polat BE; Figueroa PL; Blankschtein D; Langer R
    J Pharm Sci; 2011 Feb; 100(2):512-29. PubMed ID: 20740667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of threshold energy dose for ultrasound-induced transdermal drug transport.
    Mitragotri S; Farrell J; Tang H; Terahara T; Kost J; Langer R
    J Control Release; 2000 Jan; 63(1-2):41-52. PubMed ID: 10640579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the aqueous porous pathway model to quantify the effect of sodium lauryl sulfate on ultrasound-induced skin structural perturbation.
    Polat BE; Seto JE; Blankschtein D; Langer R
    J Pharm Sci; 2011 Apr; 100(4):1387-97. PubMed ID: 20963845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin.
    Seto JE; Polat BE; Lopez RF; Blankschtein D; Langer R
    J Control Release; 2010 Jul; 145(1):26-32. PubMed ID: 20346994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the porosity, the tortuosity, and the hindrance factor for the transdermal delivery of hydrophilic permeants in the context of the aqueous pore pathway hypothesis using dual-radiolabeled permeability experiments.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2007 Dec; 96(12):3263-82. PubMed ID: 17887176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-channel two-photon microscopy study of transdermal transport in skin treated with low-frequency ultrasound and a chemical enhancer.
    Kushner J; Kim D; So PT; Blankschtein D; Langer RS
    J Invest Dermatol; 2007 Dec; 127(12):2832-46. PubMed ID: 17554365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low-frequency ultrasound on the transdermal permeation of mannitol: comparative studies with in vivo and in vitro skin.
    Tang H; Blankschtein D; Langer R
    J Pharm Sci; 2002 Aug; 91(8):1776-94. PubMed ID: 12115805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy.
    Tezel A; Sens A; Mitragotri S
    J Pharm Sci; 2002 Feb; 91(2):444-53. PubMed ID: 11835204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous resins as a cavitation enhancer for low-frequency sonophoresis.
    Terahara T; Mitragotri S; Langer R
    J Pharm Sci; 2002 Mar; 91(3):753-9. PubMed ID: 11920760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput screening of transdermal formulations.
    Karande P; Mitragotri S
    Pharm Res; 2002 May; 19(5):655-60. PubMed ID: 12069169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An explanation for the variation of the sonophoretic transdermal transport enhancement from drug to drug.
    Mitragotri S; Blankschtein D; Langer R
    J Pharm Sci; 1997 Oct; 86(10):1190-2. PubMed ID: 9344179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental demonstration of the existence of highly permeable localized transport regions in low-frequency sonophoresis.
    Kushner J; Blankschtein D; Langer R
    J Pharm Sci; 2004 Nov; 93(11):2733-45. PubMed ID: 15389675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability.
    Tezel A; Sens A; Tuchscherer J; Mitragotri S
    J Pharm Sci; 2002 Jan; 91(1):91-100. PubMed ID: 11782900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen.
    Herwadkar A; Sachdeva V; Taylor LF; Silver H; Banga AK
    Int J Pharm; 2012 Feb; 423(2):289-96. PubMed ID: 22172289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flux enhancement effects of ionic surfactants upon passive and electroosmotic transdermal transport.
    Peck KD; Hsu J; Li SK; Ghanem AH; Higuchi WI
    J Pharm Sci; 1998 Sep; 87(9):1161-9. PubMed ID: 9724571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moisturizing lotions can increase transdermal absorption of the herbicide 2,4-dichlorophenoxacetic acid across hairless mouse skin.
    Brand RM; Charron AR; Sandler VL; Jendrzejewski JL
    Cutan Ocul Toxicol; 2007; 26(1):15-23. PubMed ID: 17464745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density.
    Tezel A; Sens A; Mitragotri S
    Pharm Res; 2002 Dec; 19(12):1841-6. PubMed ID: 12523663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble growth within the skin by rectified diffusion might play a significant role in sonophoresis.
    Lavon I; Grossman N; Kost J; Kimmel E; Enden G
    J Control Release; 2007 Feb; 117(2):246-55. PubMed ID: 17197050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.