These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 10861904)
1. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Larsson C; Påhlman IL; Gustafsson L Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904 [TBL] [Abstract][Full Text] [Related]
2. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift. Gonzalez B; de Graaf A; Renaud M; Sahm H Yeast; 2000 Apr; 16(6):483-97. PubMed ID: 10790685 [TBL] [Abstract][Full Text] [Related]
3. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852 [TBL] [Abstract][Full Text] [Related]
4. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. van Vaeck C; Wera S; van Dijck P; Thevelein JM Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409 [TBL] [Abstract][Full Text] [Related]
5. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Thomsson E; Larsson C Appl Microbiol Biotechnol; 2006 Jul; 71(4):533-42. PubMed ID: 16317544 [TBL] [Abstract][Full Text] [Related]
6. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. Mashego MR; van Gulik WM; Heijnen JJ FEMS Yeast Res; 2007 Jan; 7(1):48-66. PubMed ID: 17311584 [TBL] [Abstract][Full Text] [Related]
7. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747 [TBL] [Abstract][Full Text] [Related]
8. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1. Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of glycolysis induced by diethylstilbestrol in anaerobically grown yeast. Muratsubaki H; Enomoto K; Katsume T Biochem Int; 1989 Nov; 19(5):993-7. PubMed ID: 2699793 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. Abbott DA; van den Brink J; Minneboo IM; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 May; 9(3):349-57. PubMed ID: 19416100 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of glycolysis by 2-deoxygalactose in Saccharomyces cerevisiae. Lagunas R; Moreno E Yeast; 1992 Feb; 8(2):107-15. PubMed ID: 1532877 [TBL] [Abstract][Full Text] [Related]
12. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380 [TBL] [Abstract][Full Text] [Related]
14. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related]
15. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. Larsson C; Nilsson A; Blomberg A; Gustafsson L J Bacteriol; 1997 Dec; 179(23):7243-50. PubMed ID: 9393686 [TBL] [Abstract][Full Text] [Related]
16. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes. Götz R; Schlüter E; Shoham G; Zimmermann FK Yeast; 1999 Nov; 15(15):1619-29. PubMed ID: 10572259 [TBL] [Abstract][Full Text] [Related]
17. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K FEBS J; 2006 Apr; 273(8):1696-709. PubMed ID: 16623706 [TBL] [Abstract][Full Text] [Related]
18. On the mechanisms of glycolytic oscillations in yeast. Madsen MF; Danø S; Sørensen PG FEBS J; 2005 Jun; 272(11):2648-60. PubMed ID: 15943800 [TBL] [Abstract][Full Text] [Related]
19. Ifosfamide metabolite chloroacetaldehyde inhibits cell proliferation and glucose metabolism without decreasing cellular ATP content in human breast cancer cells MCF-7. Knouzy B; Dubourg L; Baverel G; Michoudet C J Appl Toxicol; 2010 Apr; 30(3):204-11. PubMed ID: 19774546 [TBL] [Abstract][Full Text] [Related]
20. Regulation of anaerobic glycolysis in Ehrlich ascites tumour cells. Schulz J; Baufeld A; Hofmann E; Rapoport TA; Heinrich R; Rapoport SM Acta Biol Med Ger; 1977; 36(10):1379-91. PubMed ID: 28629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]