BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1086254)

  • 1. Passage of sugars and urea across the isolated retina pigment epithelium of the frog.
    Zadunaisky JA; Degnan KJ
    Exp Eye Res; 1976 Aug; 23(2):191-6. PubMed ID: 1086254
    [No Abstract]   [Full Text] [Related]  

  • 2. Transport of taurine, L-methionine and 3-o-methyl-D-glucose across frog retinal pigment epithelium.
    Miller S; Steinberg RH
    Exp Eye Res; 1976 Aug; 23(2):177-89. PubMed ID: 1086253
    [No Abstract]   [Full Text] [Related]  

  • 3. Proceedings: The intestinal two-stage-transfer of sugars and its inhibition by phlorizin.
    Lauterbach FO
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R69. PubMed ID: 1143479
    [No Abstract]   [Full Text] [Related]  

  • 4. Transport of 3-O-methylglucose in isolated rat retinal pigment epithelial cells.
    Stramm LE; Pautler EL
    Exp Eye Res; 1982 Aug; 35(2):91-7. PubMed ID: 7151887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport in isolated mammalian pigment epithelum.
    Pascuzzo GJ; Johnson JE; Pautler EL
    Exp Eye Res; 1980 Jan; 30(1):53-8. PubMed ID: 7363968
    [No Abstract]   [Full Text] [Related]  

  • 6. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats.
    Livingston JN; Lockwood DH
    Biochem Biophys Res Commun; 1974 Dec; 61(3):989-96. PubMed ID: 4451572
    [No Abstract]   [Full Text] [Related]  

  • 7. Na+-sensitive component of 3-O-methylglucose uptake in frog skeletal muscle.
    Kitasato H; Marunaka Y
    J Membr Biol; 1985; 87(3):225-32. PubMed ID: 3878412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combined action of insulin and phlorizin on transport and metabolism of sugars and nucleotide turnover in the isolated rat diaphragm.
    Eboué-Bonis D; Clauser H
    Biochimie; 1977; 59(5-6):527-33. PubMed ID: 889936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption of sugars in the gill of the Japanese oyster, Crassostrea gigas.
    Bamford DR; Gingles R
    Comp Biochem Physiol A Comp Physiol; 1974 Dec; 49(4):637-46. PubMed ID: 4154165
    [No Abstract]   [Full Text] [Related]  

  • 10. Facilitated glucose transport across the retinal pigment epithelium of the bullfrog (Rana catesbeiana).
    DiMattio J; Streitman J
    Exp Eye Res; 1986 Jul; 43(1):15-28. PubMed ID: 3525201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basal-lateral transport and transcellular flux of methyl alpha-D-glucoside across LLC-PK1 renal epithelial cells.
    Mullin JM; Fluk L; Kleinzeller A
    Biochim Biophys Acta; 1986 Mar; 885(3):233-9. PubMed ID: 3081050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hymenolepis diminuta: membrane transport of glucose and beta-methylglucoside.
    Uglem GL; Love RD; Eubank JH
    Exp Parasitol; 1978 Jun; 45(1):88-92. PubMed ID: 668842
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of three hexose derivatives across the pancreatic epithelium: paracellular shunts or cellular passage?
    Mélèse T; Rothman SS
    Biochim Biophys Acta; 1983 Sep; 763(2):212-9. PubMed ID: 6412763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal tubular absorption of D-glucose, 3-O-methyl-D-glucose, and 2-deoxy-D-glucose.
    Knight T; Sansom S; Weinman EJ
    Am J Physiol; 1977 Oct; 233(4):F274-7. PubMed ID: 910952
    [No Abstract]   [Full Text] [Related]  

  • 15. Hexose transport in isolated brown fat cells. A model system for investigating insulin action on membrane transport.
    Czech MP; Lawrence JC; Lynn WS
    J Biol Chem; 1974 Sep; 249(17):5421-7. PubMed ID: 4413673
    [No Abstract]   [Full Text] [Related]  

  • 16. Diverse effects of insulin-induced hyperpolarization on 3-O-methyl-D-glucose (3-O-MG) transport in frog skeletal muscles.
    Marunaka Y; Murayama K; Kitasato H
    Horm Metab Res; 1987 Apr; 19(4):139-42. PubMed ID: 3556372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Otogeny of sugar transport in fetal rat kidney.
    LeLièvre-Pégorier M; Geloso JP
    Biol Neonate; 1980; 38(1-2):16-24. PubMed ID: 7388086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of glucose analogues by rat brain cortex slices: a kinetic analysis based upon a model.
    Lund-Andersen H; Kjeldsen CS
    J Neurochem; 1976 Aug; 27(2):361-8. PubMed ID: 965976
    [No Abstract]   [Full Text] [Related]  

  • 20. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.