BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1086254)

  • 41. Renal sugar transport in the winter flounder. IV. Effect of Ca2+ on sugar transport in teased renal tubules.
    Kleinzeller A; Dubyak GR
    J Cell Physiol; 1977 Oct; 93(1):11-6. PubMed ID: 908736
    [No Abstract]   [Full Text] [Related]  

  • 42. Activation of 3-O-methyl-glucose transport in rat thymus lymphocytes by concanavalin A. Temperature and calcium ion dependence and sensitivity to puromycin but to cycloheximide.
    Yasmeen D; Laird AJ; Hume DA; Weidemann MJ
    Biochim Biophys Acta; 1977 Nov; 500(1):89-102. PubMed ID: 303526
    [No Abstract]   [Full Text] [Related]  

  • 43. Membrane potentials and sugar transport by ATP-depleted intestinal cells: effect of anion gradients.
    Carter-Su C; Kimmich GA
    Am J Physiol; 1979 Jul; 237(1):C67-74. PubMed ID: 464043
    [No Abstract]   [Full Text] [Related]  

  • 44. Decrease of intracellular chloride activity by furosemide in frog retinal pigment epithelium.
    Wiederholt M; Zadunaisky JA
    Curr Eye Res; 1984 Apr; 3(4):673-5. PubMed ID: 6609051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The movement of organic solutes between the retina and pigment epithelium.
    Sellner PA
    Exp Eye Res; 1986 Oct; 43(4):631-9. PubMed ID: 3491764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The relationship between the uptake of glucose and 3-O-methylglucose and soluble carbohydrate and polysaccharide in the fungus Dendryphiella salina.
    McDermott JC; Jennings DH
    J Gen Microbiol; 1976 Dec; 97(2):193-209. PubMed ID: 1034670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An experimental method of identifying and quantifying the active transfer electrogenic component from the diffusive component during sugar absorption measured in vivo.
    Debnam ES; Levin RJ
    J Physiol; 1975 Mar; 246(1):181-96. PubMed ID: 1133782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery.
    Kansara V; Mitra AK
    Curr Eye Res; 2006 May; 31(5):415-26. PubMed ID: 16714233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sugar and amino acid transport from the rat uterine lumen: effects of estrogen and progesterone.
    Walters MR; Lawrence AL; Hazelwood RL
    Endocrinology; 1981 May; 108(5):1915-9. PubMed ID: 6783395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three light-evoked responses of the retinal pigment epithelium.
    Steinberg RH; Linsenmeier RA; Griff ER
    Vision Res; 1983; 23(11):1315-23. PubMed ID: 6606894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Renal sugar transport in the winter flounder. I. Renal clearance studies.
    Pritchard JB; Kleinzeller A
    Am J Physiol; 1976 Aug; 231(2):603-7. PubMed ID: 961913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose transport in thymocyte plasma-membrane vesicles.
    Schraw WP; Regen DM
    Biochim Biophys Acta; 1981 Dec; 649(3):726-34. PubMed ID: 7317424
    [No Abstract]   [Full Text] [Related]  

  • 53. Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP.
    Miller SS; Hughes BA; Machen TE
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):2111-5. PubMed ID: 6177005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the small intestine.
    Boyd CA; Parsons DS
    J Physiol; 1978 Jan; 274():17-36. PubMed ID: 304890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of glucose transport by cultured chick pigmented epithelium.
    Masterson E; Chader GJ
    Exp Eye Res; 1981 Mar; 32(3):279-89. PubMed ID: 7227460
    [No Abstract]   [Full Text] [Related]  

  • 57. In vitro perfusion studies of the human placenta. IV. Some characteristics of the glucose transport system in the human placenta.
    Rice PA; Rourke JE; Nesbitt EL
    Gynecol Invest; 1976; 7(4):213-21. PubMed ID: 992481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Symport H+/carbohydrate transport into Acholeplasma laidlawii cells.
    Tarshis MA; Kapitanov AB
    FEBS Lett; 1978 May; 89(1):73-7. PubMed ID: 26600
    [No Abstract]   [Full Text] [Related]  

  • 59. The Na+-dependent sugar carrier as a sensor of the cellular electrochemical Na+ potential.
    Kimmich GA
    Prog Clin Biol Res; 1981; 73():129-42. PubMed ID: 7323079
    [No Abstract]   [Full Text] [Related]  

  • 60. Demonstration of a D-glucose transport system in the biliary tree of the rat by use of the segmented retrograde intrabiliary injection technique.
    Olson JR; Fujimoto JM
    Biochem Pharmacol; 1980 Feb; 29(2):213-9. PubMed ID: 6767480
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.