BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1086254)

  • 61. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium.
    Hughes BA; Adorante JS; Miller SS; Lin H
    J Gen Physiol; 1989 Jul; 94(1):125-50. PubMed ID: 2553856
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamic aspects of glucose transport modulation in thymocytes.
    Whitesell RR; Hoffman LH; Regen DM
    J Biol Chem; 1977 May; 252(10):3533-7. PubMed ID: 324996
    [No Abstract]   [Full Text] [Related]  

  • 63. Adenylate cyclase stimulation alters transport in frog retinal pigment epithelium.
    Hughes BA; Miller SS; Farber DB
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C385-95. PubMed ID: 2436482
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intestinal sugar transport in experimental diabetes.
    Csáky TZ; Fischer E
    Diabetes; 1981 Jul; 30(7):568-74. PubMed ID: 6454600
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cyclic AMP modulation of ion transport across frog retinal pigment epithelium. Measurements in the short-circuit state.
    Miller S; Farber D
    J Gen Physiol; 1984 Jun; 83(6):853-74. PubMed ID: 6330280
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C; Bennett E; Randles J; Kimmich GA
    Am J Physiol; 1990 Feb; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transport of glucose and fructose in rat hepatocytes at 37 degrees C.
    Okuno Y; Gliemann J
    Biochim Biophys Acta; 1986 Nov; 862(2):329-34. PubMed ID: 3778895
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bradykinin and skeletal muscle sugar uptake.
    Hartl WH; Jauch KW; Wicklmayr M; Dietze GJ
    J Appl Physiol (1985); 1987 Jul; 63(1):443-4. PubMed ID: 3624148
    [No Abstract]   [Full Text] [Related]  

  • 69. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina.
    Oakley B; Steinberg RH
    Vision Res; 1982; 22(7):767-73. PubMed ID: 6981879
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of the effects of insulin and H2O2 on adipocyte glucose transport.
    Ciaraldi TP; Olefsky JM
    J Cell Physiol; 1982 Mar; 110(3):323-8. PubMed ID: 7045141
    [No Abstract]   [Full Text] [Related]  

  • 71. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity.
    Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU
    Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Active transport of glucose and alpha-methylglucoside in the cyanobacterium Plectonema boryanum.
    Raboy B; Padan E
    J Biol Chem; 1978 May; 253(9):3287-91. PubMed ID: 417083
    [No Abstract]   [Full Text] [Related]  

  • 73. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 3-O-Methylglucose transport into lymphocytes and the effect of insulin [proceedings].
    Caygill CP; Pring JB
    Biochem Soc Trans; 1977; 5(4):1056-8. PubMed ID: 913781
    [No Abstract]   [Full Text] [Related]  

  • 75. [3-O-methl-D-glucose transport system in the cells of Acholeplasma laidlawii].
    Bekkuzhin AG; Panchenko LF; Tarshis MA
    Vopr Med Khim; 1976; 22(2):212-5. PubMed ID: 1025884
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transport of glucose analogues in rat lung.
    Kerr JS; Fisher AB; Kleinzeller A
    Am J Physiol; 1981 Sep; 241(3):E191-5. PubMed ID: 7282921
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcuticular uptake of methyl glucose by Setaria cervi.
    Roy TK; Masood K; Srivastava VM
    Indian J Exp Biol; 1983 May; 21(5):280-4. PubMed ID: 6667981
    [No Abstract]   [Full Text] [Related]  

  • 79. The structural requirement for C1-OH for the active transport of D-mannose and 2-deoxy-D-hexoses by renal tubular cells.
    Kleinzeller A; Tam I; Kanter RK; McAvoy EM
    Biochim Biophys Acta; 1974 Dec; 373(3):397-403. PubMed ID: 4433584
    [No Abstract]   [Full Text] [Related]  

  • 80. The nature and control of carbohydrate uptake by Escherichia coli.
    Kornberg HL
    FEBS Lett; 1976 Mar; 63(1):3-9. PubMed ID: 770191
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.