These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10862770)

  • 21. Novel inter-domain Ca
    Takeda S; Fujiwara I; Sugimoto Y; Oda T; Narita A; Maéda Y
    J Muscle Res Cell Motil; 2020 Mar; 41(1):153-162. PubMed ID: 31863323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions.
    Garg R; Peddada N; Sagar A; Nihalani D; Ashish
    J Biol Chem; 2011 Jun; 286(23):20387-97. PubMed ID: 21498516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails.
    Larson L; Arnaudeau S; Gibson B; Li W; Krause R; Hao B; Bamburg JR; Lew DP; Demaurex N; Southwick F
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1921-6. PubMed ID: 15671163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Full-contact domain labeling: identification of a novel phosphoinositide binding site on gelsolin that requires the complete protein.
    Feng L; Mejillano M; Yin HL; Chen J; Prestwich GD
    Biochemistry; 2001 Jan; 40(4):904-13. PubMed ID: 11170411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-induced conformational changes in the amino-terminal half of gelsolin.
    Roustan C; Ferjani I; Maciver SK; Fattoum A; Rebière B; Benyamin Y
    FEBS Lett; 2007 Feb; 581(4):681-6. PubMed ID: 17258204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A CapG gain-of-function mutant reveals critical structural and functional determinants for actin filament severing.
    Zhang Y; Vorobiev SM; Gibson BG; Hao B; Sidhu GS; Mishra VS; Yarmola EG; Bubb MR; Almo SC; Southwick FS
    EMBO J; 2006 Oct; 25(19):4458-67. PubMed ID: 16977317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gelsolin as a calcium-regulated actin filament-capping protein.
    Gremm D; Wegner A
    Eur J Biochem; 2000 Jul; 267(14):4339-45. PubMed ID: 10880956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+ regulation of gelsolin activity: binding and severing of F-actin.
    Kinosian HJ; Newman J; Lincoln B; Selden LA; Gershman LC; Estes JE
    Biophys J; 1998 Dec; 75(6):3101-9. PubMed ID: 9826630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the N- and C-terminal actin-binding domains of gelsolin in barbed filament end capping.
    Weber A; Pring M; Lin SL; Bryan J
    Biochemistry; 1991 Sep; 30(38):9327-34. PubMed ID: 1654094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of critical functional and regulatory domains in gelsolin.
    Kwiatkowski DJ; Janmey PA; Yin HL
    J Cell Biol; 1989 May; 108(5):1717-26. PubMed ID: 2541138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of plasma gelsolin: implications for actin severing, capping, and nucleation.
    Burtnick LD; Koepf EK; Grimes J; Jones EY; Stuart DI; McLaughlin PJ; Robinson RC
    Cell; 1997 Aug; 90(4):661-70. PubMed ID: 9288746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gelsolin domains 4-6 in active, actin-free conformation identifies sites of regulatory calcium ions.
    Kolappan S; Gooch JT; Weeds AG; McLaughlin PJ
    J Mol Biol; 2003 May; 329(1):85-92. PubMed ID: 12742020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-controlled conformational choreography in the N-terminal half of adseverin.
    Chumnarnsilpa S; Robinson RC; Grimes JM; Leyrat C
    Nat Commun; 2015 Sep; 6():8254. PubMed ID: 26365202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Definition of an N-terminal actin-binding domain and a C-terminal Ca2+ regulatory domain in human brevin.
    Bryan J; Hwo S
    J Cell Biol; 1986 Apr; 102(4):1439-46. PubMed ID: 3082893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for an actin binding helix in gelsolin segment 2; have homologous sequences in segments 1 and 2 of gelsolin evolved to divergent actin binding functions?
    Van Troys M; Dewitte D; Goethals M; Vandekerckhove J; Ampe C
    FEBS Lett; 1996 Nov; 397(2-3):191-6. PubMed ID: 8955345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the gelsolin-polyphosphoinositide interaction and engineering of a polyphosphoinositide-sensitive gelsolin C-terminal half protein.
    Xian W; Janmey PA
    J Mol Biol; 2002 Sep; 322(4):755-71. PubMed ID: 12270712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational and functional studies of three gelsolin subdomain-1 synthetic peptides and their implication in actin polymerization.
    Feinberg J; Mery J; Heitz F; Benyamin Y; Roustan C
    Biopolymers; 1997 May; 41(6):647-55. PubMed ID: 9108732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gelsolin binds to polyphosphoinositide-free lipid vesicles and simultaneously to actin microfilaments.
    Méré J; Chahinian A; Maciver SK; Fattoum A; Bettache N; Benyamin Y; Roustan C
    Biochem J; 2005 Feb; 386(Pt 1):47-56. PubMed ID: 15527423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gelsolin: the tail of a molecular gymnast.
    Nag S; Larsson M; Robinson RC; Burtnick LD
    Cytoskeleton (Hoboken); 2013 Jul; 70(7):360-84. PubMed ID: 23749648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking.
    Janmey PA; Chaponnier C; Lind SE; Zaner KS; Stossel TP; Yin HL
    Biochemistry; 1985 Jul; 24(14):3714-23. PubMed ID: 2994715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.