These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 10862883)

  • 1. Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering.
    Farfán M; Calderón IL
    Enzyme Microb Technol; 2000 Jun; 26(9-10):763-770. PubMed ID: 10862883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of gene amplification on threonine production by yeast.
    Farfán MJ; Martín-Rendón E; Calderón IL
    Biotechnol Bioeng; 1996 Mar; 49(6):667-74. PubMed ID: 18626862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters.
    Farfán MJ; Aparicio L; Calderón IL
    Appl Environ Microbiol; 1999 Jan; 65(1):110-6. PubMed ID: 9872767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae.
    Petersen JG; Kielland-Brandt MC; Nilsson-Tillgren T; Bornaes C; Holmberg S
    Genetics; 1988 Jul; 119(3):527-34. PubMed ID: 2841185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature-regulated way.
    Velasco I; Arévalo-Rodríguez M; Marina P; Calderón IL
    Yeast; 2005 Jan; 22(2):99-110. PubMed ID: 15645479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locus-specific suppression of ilv1 in Saccharomyces cerevisiae by deregulation of CHA1 transcription.
    Pedersen JO; Rodríguez MA; Praetorius-Ibba M; Nilsson-Tillgren T; Calderón IL; Holmberg S
    Mol Gen Genet; 1997 Aug; 255(6):561-9. PubMed ID: 9323359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of a mutant allele that deregulates the threonine biosynthesis in Saccharomyces cerevisiae.
    Martin-Rendon E; Farfán MJ; Ramos C; Calderon IL
    Curr Genet; 1993 Dec; 24(6):465-71. PubMed ID: 8299165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.
    Ramos C; Calderon IL
    Appl Environ Microbiol; 1992 May; 58(5):1677-82. PubMed ID: 1622238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum.
    Eikmanns BJ; Eggeling L; Sahm H
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):145-63. PubMed ID: 8092856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and biochemical study of threonine-overproducing mutants of Saccharomyces cerevisiae.
    Delgado MA; Guerrero J; Conde J
    Mol Cell Biol; 1982 Jul; 2(7):731-6. PubMed ID: 6821505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae.
    Arévalo-Rodríguez M; Calderón IL; Holmberg S
    Yeast; 1999 Sep; 15(13):1331-45. PubMed ID: 10509015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation.
    Arévalo-Rodríguez M; Pan X; Boeke JD; Heitman J
    Eukaryot Cell; 2004 Oct; 3(5):1287-96. PubMed ID: 15470257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6 mutant.
    Rognes SE; Dewaele E; Aas SF; Jacobs M; Frankard V
    Plant Mol Biol; 2003 Jan; 51(2):281-94. PubMed ID: 12602885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators.
    Moreira JM; Holmberg S
    EMBO J; 1998 Oct; 17(20):6028-38. PubMed ID: 9774346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of L-lysine-, L-threonine-, and L-isoleucine-overproducing strains of Corynebacterium glutamicum.
    Sahm H; Eggeling L; Eikmanns B; Krämer R
    Ann N Y Acad Sci; 1996 May; 782():25-39. PubMed ID: 8659901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular responses to L-serine in Saccharomyces cerevisiae: roles of general amino acid control, compartmentalization, and aspartate synthesis.
    Lee JC; Tsoi A; Kornfeld GD; Dawes IW
    FEMS Yeast Res; 2013 Nov; 13(7):618-34. PubMed ID: 23837815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae.
    Ramos F; Wiame JM
    Eur J Biochem; 1982 Apr; 123(3):571-6. PubMed ID: 7042346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis.
    Dong X; Zhao Y; Zhao J; Wang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):873-85. PubMed ID: 27033538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae.
    Mountain HA; Byström AS; Larsen JT; Korch C
    Yeast; 1991 Nov; 7(8):781-803. PubMed ID: 1789001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
    Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.