These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 1086312)
1. Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from transplanted eye primordia. Constantine-Paton M; Capranica RR J Comp Neurol; 1976 Nov; 170(1):17-31. PubMed ID: 1086312 [TBL] [Abstract][Full Text] [Related]
2. Axonal guidance of developing optic nerves in the frog. II. electrophysiological studies of the projection from transplanted eye primordia. Constantine-Paton M; Capranica RR J Comp Neurol; 1976 Nov; 170(1):33-51. PubMed ID: 1086313 [TBL] [Abstract][Full Text] [Related]
3. Central projection of optic tract from translocated eyes in the leopard frog (Rana pipiens). Constantine-Paton M; Caprianica RR Science; 1975 Aug; 189(4201):480-2. PubMed ID: 50621 [TBL] [Abstract][Full Text] [Related]
4. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens. Reh TA; Pitts E; Constantine-Paton M J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077 [TBL] [Abstract][Full Text] [Related]
6. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection. Singman EL; Scalia F J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327 [TBL] [Abstract][Full Text] [Related]
7. Regions of the brain influencing the projection of developing optic tracts in the salamander. Harris WA J Comp Neurol; 1980 Nov; 194(2):319-33. PubMed ID: 7440804 [TBL] [Abstract][Full Text] [Related]
8. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin. Bohn RC; Stelzner DJ J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756 [TBL] [Abstract][Full Text] [Related]
9. Central projections of anuran optic nerves penetrating hindbrain or spinal cord regions of the neural tube. Constantine-Paton M Brain Res; 1978 Dec; 158(1):31-43. PubMed ID: 21348350 [TBL] [Abstract][Full Text] [Related]
10. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina. Matsumoto DE; Scalia F J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743 [TBL] [Abstract][Full Text] [Related]
11. The aberrant retino-retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves. Bohn RC; Stelzner DJ J Comp Neurol; 1981 Mar; 196(4):633-43. PubMed ID: 6970758 [TBL] [Abstract][Full Text] [Related]
12. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog. Singman EL; Scalia F J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052 [TBL] [Abstract][Full Text] [Related]
13. Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis. Grant P; Ma PM J Comp Neurol; 1986 Aug; 250(3):364-76. PubMed ID: 3745520 [TBL] [Abstract][Full Text] [Related]
14. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section. Straznicky C; Tay D J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924 [TBL] [Abstract][Full Text] [Related]
15. Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina. Halfter W Dev Biol; 1996 Jul; 177(1):160-77. PubMed ID: 8660885 [TBL] [Abstract][Full Text] [Related]
16. The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus. Taylor JS; Willshaw DJ; Gaze RM J Embryol Exp Morphol; 1985 Feb; 85():225-38. PubMed ID: 3989450 [TBL] [Abstract][Full Text] [Related]
17. Effect of different optic nerve lesions on retinal ganglion cell death in the frog Rana pipiens. Humphrey MF J Comp Neurol; 1987 Dec; 266(2):209-19. PubMed ID: 3501791 [TBL] [Abstract][Full Text] [Related]
18. Specification of retinotectal connexions during development of the toad Xenopus laevis. Sharma SC; Hollyfield JG J Embryol Exp Morphol; 1980 Feb; 55():77-92. PubMed ID: 7373205 [TBL] [Abstract][Full Text] [Related]
19. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus). Chamberlain SC; Barlow RB J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403 [TBL] [Abstract][Full Text] [Related]
20. Changes in fiber order in the optic nerve and tract of rat embryos. Chan SO; Guillery RW J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]