These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 10863673)

  • 1. Pseudohyphal development of Saccharomyces cerevisiae.
    Mösch HU
    Contrib Microbiol; 2000; 5():185-200. PubMed ID: 10863673
    [No Abstract]   [Full Text] [Related]  

  • 2. Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth.
    Palecek SP; Parikh AS; Kron SJ
    Microbiology (Reading); 2002 Apr; 148(Pt 4):893-907. PubMed ID: 11932437
    [No Abstract]   [Full Text] [Related]  

  • 3. Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae.
    Mösch HU; Köhler T; Braus GH
    Mol Cell Biol; 2001 Jan; 21(1):235-48. PubMed ID: 11113198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.
    Mutlu N; Kumar A
    Curr Genet; 2019 Feb; 65(1):119-125. PubMed ID: 30101372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae.
    Pan X; Harashima T; Heitman J
    Curr Opin Microbiol; 2000 Dec; 3(6):567-72. PubMed ID: 11121775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae.
    Fujita A; Hiroko T; Hiroko F; Oka C
    Gene; 2005 Dec; 363():97-104. PubMed ID: 16289536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling.
    Zaragoza O; Gancedo JM
    Antonie Van Leeuwenhoek; 2000 Aug; 78(2):187-94. PubMed ID: 11204770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.
    Kim J; Rose MD
    PLoS Genet; 2015 Dec; 11(12):e1005684. PubMed ID: 26640955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
    Lorenz MC; Heitman J
    EMBO J; 1997 Dec; 16(23):7008-18. PubMed ID: 9384580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.
    Chang M; Kang CM; Park YS; Yun CW
    Biochem Biophys Res Commun; 2014 Feb; 444(4):656-61. PubMed ID: 24491552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases.
    Zhang Z; Smith MM; Mymryk JS
    Mol Biol Cell; 2001 Mar; 12(3):699-710. PubMed ID: 11251081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An essential role for cyclic AMP in growth control: the case for yeast.
    Thorner J
    Cell; 1982 Aug; 30(1):5-6. PubMed ID: 6290081
    [No Abstract]   [Full Text] [Related]  

  • 15. Jekyll and Hyde in the microbial world.
    Truckses DM; Garrenton LS; Thorner J
    Science; 2004 Nov; 306(5701):1509-11. PubMed ID: 15567850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Rho-GAP Bem2p plays a GAP-independent role in the morphogenesis checkpoint.
    Marquitz AR; Harrison JC; Bose I; Zyla TR; McMillan JN; Lew DJ
    EMBO J; 2002 Aug; 21(15):4012-25. PubMed ID: 12145202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae.
    Boy-Marcotte E; Garreau H; Jacquet M
    Yeast; 1987 Jun; 3(2):85-93. PubMed ID: 2849258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical model of the cell cycle regulation in budding yeasts.
    Prikrylová D; Bucánek D
    Biomed Biochim Acta; 1990; 49(8-9):733-6. PubMed ID: 1964555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast.
    Moffat J; Andrews B
    Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase.
    Otaka E; Kumazaki T; Matsumoto K
    J Bacteriol; 1986 Aug; 167(2):713-5. PubMed ID: 3015887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.