These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 10863995)
1. Muscle and motor-skill dysfunction in a K+ channel-deficient mouse are not due to altered muscle excitability or fiber type but depend on the genetic background. Sánchez JA; Ho CS; Vaughan DM; Garcia MC; Grange RW; Joho RH Pflugers Arch; 2000 May; 440(1):34-41. PubMed ID: 10863995 [TBL] [Abstract][Full Text] [Related]
2. Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Ho CS; Grange RW; Joho RH Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1533-8. PubMed ID: 9037088 [TBL] [Abstract][Full Text] [Related]
3. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. Lau D; Vega-Saenz de Miera EC; Contreras D; Ozaita A; Harvey M; Chow A; Noebels JL; Paylor R; Morgan JI; Leonard CS; Rudy B J Neurosci; 2000 Dec; 20(24):9071-85. PubMed ID: 11124984 [TBL] [Abstract][Full Text] [Related]
4. Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. Joho RH; Ho CS; Marks GA J Neurophysiol; 1999 Oct; 82(4):1855-64. PubMed ID: 10515974 [TBL] [Abstract][Full Text] [Related]
5. Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. Matsukawa H; Wolf AM; Matsushita S; Joho RH; Knöpfel T J Neurosci; 2003 Aug; 23(20):7677-84. PubMed ID: 12930807 [TBL] [Abstract][Full Text] [Related]
6. Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. Espinosa F; McMahon A; Chan E; Wang S; Ho CS; Heintz N; Joho RH J Neurosci; 2001 Sep; 21(17):6657-65. PubMed ID: 11517255 [TBL] [Abstract][Full Text] [Related]
7. Potential role for kv3.1b channels as oxygen sensors. Osipenko ON; Tate RJ; Gurney AM Circ Res; 2000 Mar; 86(5):534-40. PubMed ID: 10720415 [TBL] [Abstract][Full Text] [Related]
8. Resilient RTN fast spiking in Kv3.1 null mice suggests redundancy in the action potential repolarization mechanism. Porcello DM; Ho CS; Joho RH; Huguenard JR J Neurophysiol; 2002 Mar; 87(3):1303-10. PubMed ID: 11877504 [TBL] [Abstract][Full Text] [Related]
9. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Espinosa F; Marks G; Heintz N; Joho RH Genes Brain Behav; 2004 Apr; 3(2):90-100. PubMed ID: 15005717 [TBL] [Abstract][Full Text] [Related]
10. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3. McMahon A; Fowler SC; Perney TM; Akemann W; Knöpfel T; Joho RH Eur J Neurosci; 2004 Jun; 19(12):3317-27. PubMed ID: 15217387 [TBL] [Abstract][Full Text] [Related]
11. Kv3.1-Kv3.2 channels underlie a high-voltage-activating component of the delayed rectifier K+ current in projecting neurons from the globus pallidus. Hernández-Pineda R; Chow A; Amarillo Y; Moreno H; Saganich M; Vega-Saenz de Miera EC; Hernández-Cruz A; Rudy B J Neurophysiol; 1999 Sep; 82(3):1512-28. PubMed ID: 10482766 [TBL] [Abstract][Full Text] [Related]
12. Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. Erisir A; Lau D; Rudy B; Leonard CS J Neurophysiol; 1999 Nov; 82(5):2476-89. PubMed ID: 10561420 [TBL] [Abstract][Full Text] [Related]
13. Kv3.1b is a novel component of CNS nodes. Devaux J; Alcaraz G; Grinspan J; Bennett V; Joho R; Crest M; Scherer SS J Neurosci; 2003 Jun; 23(11):4509-18. PubMed ID: 12805291 [TBL] [Abstract][Full Text] [Related]
14. Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. Lien CC; Jonas P J Neurosci; 2003 Mar; 23(6):2058-68. PubMed ID: 12657664 [TBL] [Abstract][Full Text] [Related]
15. Gating, modulation and subunit composition of voltage-gated K(+) channels in dendritic inhibitory interneurones of rat hippocampus. Lien CC; Martina M; Schultz JH; Ehmke H; Jonas P J Physiol; 2002 Jan; 538(Pt 2):405-19. PubMed ID: 11790809 [TBL] [Abstract][Full Text] [Related]
16. Differential subcellular localization of the two alternatively spliced isoforms of the Kv3.1 potassium channel subunit in brain. Ozaita A; Martone ME; Ellisman MH; Rudy B J Neurophysiol; 2002 Jul; 88(1):394-408. PubMed ID: 12091563 [TBL] [Abstract][Full Text] [Related]
17. A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina. Ozaita A; Petit-Jacques J; Völgyi B; Ho CS; Joho RH; Bloomfield SA; Rudy B J Neurosci; 2004 Aug; 24(33):7335-43. PubMed ID: 15317859 [TBL] [Abstract][Full Text] [Related]
18. Developmental expression of potassium-channel subunit Kv3.2 within subpopulations of mouse hippocampal inhibitory interneurons. Tansey EP; Chow A; Rudy B; McBain CJ Hippocampus; 2002; 12(2):137-48. PubMed ID: 12000114 [TBL] [Abstract][Full Text] [Related]
19. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Abbott GW; Butler MH; Bendahhou S; Dalakas MC; Ptacek LJ; Goldstein SA Cell; 2001 Jan; 104(2):217-31. PubMed ID: 11207363 [TBL] [Abstract][Full Text] [Related]
20. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Baranauskas G; Tkatch T; Nagata K; Yeh JZ; Surmeier DJ Nat Neurosci; 2003 Mar; 6(3):258-66. PubMed ID: 12592408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]