These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
586 related articles for article (PubMed ID: 10864330)
1. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Huiskes R; Ruimerman R; van Lenthe GH; Janssen JD Nature; 2000 Jun; 405(6787):704-6. PubMed ID: 10864330 [TBL] [Abstract][Full Text] [Related]
2. A 3-dimensional computer model to simulate trabecular bone metabolism. Ruimerman R; Van Rietbergen B; Hilbers P; Huiskes R Biorheology; 2003; 40(1-3):315-20. PubMed ID: 12454421 [TBL] [Abstract][Full Text] [Related]
3. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics. Tanck E; Ruimerman R; Huiskes R J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155 [TBL] [Abstract][Full Text] [Related]
4. A theoretical framework for strain-related trabecular bone maintenance and adaptation. Ruimerman R; Hilbers P; van Rietbergen B; Huiskes R J Biomech; 2005 Apr; 38(4):931-41. PubMed ID: 15713314 [TBL] [Abstract][Full Text] [Related]
5. Proposal for the regulatory mechanism of Wolff's law. Mullender MG; Huiskes R J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066 [TBL] [Abstract][Full Text] [Related]
7. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Tsubota K; Adachi T Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471 [TBL] [Abstract][Full Text] [Related]
8. [Development, physiology, and cell activity of bone]. de Baat P; Heijboer MP; de Baat C Ned Tijdschr Tandheelkd; 2005 Jul; 112(7):258-63. PubMed ID: 16047964 [TBL] [Abstract][Full Text] [Related]
9. Describing force-induced bone growth and adaptation by a mathematical model. Maldonado S; Findeisen R; Allgöwer F J Musculoskelet Neuronal Interact; 2008; 8(1):15-7. PubMed ID: 18398254 [TBL] [Abstract][Full Text] [Related]
10. Phenomenological model of bone remodeling cycle containing osteocyte regulation loop. Moroz A; Crane MC; Smith G; Wimpenny DI Biosystems; 2006 Jun; 84(3):183-90. PubMed ID: 16387419 [TBL] [Abstract][Full Text] [Related]
11. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Skerry TM Arch Biochem Biophys; 2008 May; 473(2):117-23. PubMed ID: 18334226 [TBL] [Abstract][Full Text] [Related]
13. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Adachi T; Kameo Y; Hojo M Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268 [TBL] [Abstract][Full Text] [Related]
14. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. Smit TH; Burger EH; Huyghe JM J Bone Miner Res; 2002 Nov; 17(11):2021-9. PubMed ID: 12412810 [TBL] [Abstract][Full Text] [Related]
16. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system. Tezuka K; Wada Y; Takahashi A; Kikuchi M J Bone Miner Metab; 2005; 23(1):1-7. PubMed ID: 15616887 [TBL] [Abstract][Full Text] [Related]
17. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture. Christiansen P APMIS Suppl; 2001; (102):1-52. PubMed ID: 11419022 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Skerry TM; Suva LJ Cell Biochem Funct; 2003 Sep; 21(3):223-9. PubMed ID: 12910474 [TBL] [Abstract][Full Text] [Related]
19. Systems analysis of bone remodelling as a homeostatic regulator. Chen A; Hamamura K; Zhang P; Chen Y; Yokota H IET Syst Biol; 2010 Jan; 4(1):52-63. PubMed ID: 20001092 [TBL] [Abstract][Full Text] [Related]
20. Bone remodeling. Hadjidakis DJ; Androulakis II Ann N Y Acad Sci; 2006 Dec; 1092():385-96. PubMed ID: 17308163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]