BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10864441)

  • 1. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage.
    Bonassar LJ; Grodzinsky AJ; Srinivasan A; Davila SG; Trippel SB
    Arch Biochem Biophys; 2000 Jul; 379(1):57-63. PubMed ID: 10864441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I.
    Bonassar LJ; Grodzinsky AJ; Frank EH; Davila SG; Bhaktav NR; Trippel SB
    J Orthop Res; 2001 Jan; 19(1):11-7. PubMed ID: 11332605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants.
    Sah RL; Chen AC; Grodzinsky AJ; Trippel SB
    Arch Biochem Biophys; 1994 Jan; 308(1):137-47. PubMed ID: 8311446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role and content of endogenous insulin-like growth factor-binding proteins in bovine articular cartilage.
    Morales TI
    Arch Biochem Biophys; 1997 Jul; 343(2):164-72. PubMed ID: 9224726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of basic fibroblast growth factor, transforming growth factor-beta 1, insulin-like growth factor-1, and insulin on human osteoarthritic articular cartilage explants.
    Posever J; Phillips FM; Pottenger LA
    J Orthop Res; 1995 Nov; 13(6):832-7. PubMed ID: 8544018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthetic response of cartilage explants to dynamic compression.
    Sah RL; Kim YJ; Doong JY; Grodzinsky AJ; Plaas AH; Sandy JD
    J Orthop Res; 1989; 7(5):619-36. PubMed ID: 2760736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factor-beta and insulin-like growth factor-1 restore proteoglycan metabolism of bovine articular cartilage after depletion by retinoic acid.
    Morales TI
    Arch Biochem Biophys; 1994 Nov; 315(1):190-8. PubMed ID: 7979398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli.
    Kim YJ; Sah RL; Grodzinsky AJ; Plaas AH; Sandy JD
    Arch Biochem Biophys; 1994 May; 311(1):1-12. PubMed ID: 8185305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin-like growth factor I regulation of Swarm rat chondrosarcoma chondrocytes in culture.
    Seong SC; Matsumura T; Lee FY; Whelan MC; Li XQ; Trippel SB
    Exp Cell Res; 1994 Apr; 211(2):238-44. PubMed ID: 8143769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glucocorticoids on cartilage growth and response to IGF-I in the tilapia (Oreochromis mossambicus).
    Datuin JP; Ng KP; Hayes TB; Bern HA
    Gen Comp Endocrinol; 2001 Mar; 121(3):289-94. PubMed ID: 11254370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression.
    Lee CR; Grodzinsky AJ; Spector M
    J Biomed Mater Res A; 2003 Mar; 64(3):560-9. PubMed ID: 12579571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High concentrations of fibronectin fragments cause short-term catabolic effects in cartilage tissue while lower concentrations cause continuous anabolic effects.
    Homandberg GA; Hui F
    Arch Biochem Biophys; 1994 Jun; 311(2):213-8. PubMed ID: 8203883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P188 reduces cell death and IGF-I reduces GAG release following single-impact loading of articular cartilage.
    Natoli RM; Athanasiou KA
    J Biomech Eng; 2008 Aug; 130(4):041012. PubMed ID: 18601454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of free and bound insulin-like growth factors on proteoglycan metabolism in articular cartilage explants.
    Tesch GH; Handley CJ; Cornell HJ; Herington AC
    J Orthop Res; 1992 Jan; 10(1):14-22. PubMed ID: 1370177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic response and mechanical properties of articular cartilage after injurious compression.
    Kurz B; Jin M; Patwari P; Cheng DM; Lark MW; Grodzinsky AJ
    J Orthop Res; 2001 Nov; 19(6):1140-6. PubMed ID: 11781016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent changes in the response of cartilage to static compression suggest interstitial pH is not the only signaling mechanism.
    Boustany NN; Gray ML; Black AC; Hunziker EB
    J Orthop Res; 1995 Sep; 13(5):740-50. PubMed ID: 7472753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged treatment of human osteoarthritic chondrocytes with insulin-like growth factor-I stimulates proteoglycan synthesis but not proteoglycan matrix accumulation in alginate cultures.
    Loeser RF; Todd MD; Seely BL
    J Rheumatol; 2003 Jul; 30(7):1565-70. PubMed ID: 12858460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression of cartilage results in differential effects on biosynthetic pathways for aggrecan, link protein, and hyaluronan.
    Kim YJ; Grodzinsky AJ; Plaas AH
    Arch Biochem Biophys; 1996 Apr; 328(2):331-40. PubMed ID: 8645012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of insulin-like growth factor-I in hyaluronan mediated repair of cultured cartilage explants.
    Homandberg GA; Ummadi V; Kang H
    Inflamm Res; 2004 Aug; 53(8):396-404. PubMed ID: 15316671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage.
    De Mattei M; Pellati A; Pasello M; Ongaro A; Setti S; Massari L; Gemmati D; Caruso A
    Osteoarthritis Cartilage; 2004 Oct; 12(10):793-800. PubMed ID: 15450529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.