BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10864452)

  • 1. The status of half-cystine residues and locations of N-glycosylated asparagine residues in human eosinophil peroxidase.
    Thomsen AR; Sottrup-Jensen L; Gleich GJ; Oxvig C
    Arch Biochem Biophys; 2000 Jul; 379(1):147-52. PubMed ID: 10864452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo.
    Wu W; Chen Y; d'Avignon A; Hazen SL
    Biochemistry; 1999 Mar; 38(12):3538-48. PubMed ID: 10090740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extra disulfide bridge in the constant domain of Rana catesbeiana immunoglobulin light chains.
    Mikoryak CA; Elliott BW; Kimball ME; Steiner LA
    J Immunol; 1986 Jan; 136(1):217-23. PubMed ID: 3079608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational modifications of human inter-alpha-inhibitor: identification of glycans and disulfide bridges in heavy chains 1 and 2.
    Olsen EH; Rahbek-Nielsen H; Thogersen IB; Roepstorff P; Enghild JJ
    Biochemistry; 1998 Jan; 37(1):408-16. PubMed ID: 9425062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eosinophilic peroxidase deficiency: Identification of a point mutation (D648N) and prediction of structural changes.
    Nakagawa T; Ikemoto T; Takeuchi T; Tanaka K; Tanigawa N; Yamamoto D; Shimizu A
    Hum Mutat; 2001 Mar; 17(3):235-6. PubMed ID: 11241847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical evidence for heme linkage through esters with Asp-93 and Glu-241 in human eosinophil peroxidase. The ester with Asp-93 is only partially formed in vivo.
    Oxvig C; Thomsen AR; Overgaard MT; Sorensen ES; Højrup P; Bjerrum MJ; Gleich GJ; Sottrup-Jensen L
    J Biol Chem; 1999 Jun; 274(24):16953-8. PubMed ID: 10358043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase.
    Battistuzzi G; Bellei M; Vlasits J; Banerjee S; Furtmüller PG; Sola M; Obinger C
    Arch Biochem Biophys; 2010 Feb; 494(1):72-7. PubMed ID: 19944669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential comparison of peptides containing half-cystine residues from ovalbumins of six avian species.
    Sun Y; Hayakawa S
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2589-96. PubMed ID: 11826952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of human eosinophil peroxidase by human neutrophils.
    Zabucchi G; Menegazzi R; Soranzo MR; Patriarca P
    Am J Pathol; 1986 Sep; 124(3):510-8. PubMed ID: 3020987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human eosinophil peroxidase: purification and characterization.
    Carlson MG; Peterson CG; Venge P
    J Immunol; 1985 Mar; 134(3):1875-9. PubMed ID: 3918110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent association of heavy and light chains in Rana catesbeiana immunoglobulins.
    Mikoryak CA; Steiner LA
    J Immunol; 1984 Jul; 133(1):376-83. PubMed ID: 6427343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloperoxidase is more efficient than eosinophil peroxidase in the in vitro killing of newborn larvae of Trichinella spiralis.
    Buys J; Wever R; Ruitenberg EJ
    Immunology; 1984 Mar; 51(3):601-7. PubMed ID: 6321330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of lactoperoxidase at 2.4 A resolution.
    Singh AK; Singh N; Sharma S; Singh SB; Kaur P; Bhushan A; Srinivasan A; Singh TP
    J Mol Biol; 2008 Feb; 376(4):1060-75. PubMed ID: 18191143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry.
    Hoffman RC; Jennings LL; Tsigelny I; Comoletti D; Flynn RE; Sudhof TC; Taylor P
    Biochemistry; 2004 Feb; 43(6):1496-506. PubMed ID: 14769026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes.
    Salmaso BL; Puppels GJ; Caspers PJ; Floris R; Wever R; Greve J
    Biophys J; 1994 Jul; 67(1):436-46. PubMed ID: 7919017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of homovanillic acid as a selective assay for eosinophil peroxidase in eosinophil peroxidase-myeloperoxidase mixtures and its use in the detection of human eosinophil peroxidase deficiency.
    Menegazzi R; Zabucchi G; Zuccato P; Cramer R; Piccinini C; Patriarca P
    J Immunol Methods; 1991 Mar; 137(1):55-63. PubMed ID: 1849156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern.
    Milbradt AG; Boulegue C; Moroder L; Renner C
    J Mol Biol; 2005 Dec; 354(3):591-600. PubMed ID: 16257007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the disulfide bridge pattern of the recombinant human growth and differentiation factor 5 dimer and the interchain Cys/Ala mutant monomer.
    Trachsel C; Kämpfer U; Bechtold R; Schaller J; Schürch S
    Anal Biochem; 2009 Jul; 390(2):103-8. PubMed ID: 19393216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site structure and catalytic mechanisms of human peroxidases.
    Furtmüller PG; Zederbauer M; Jantschko W; Helm J; Bogner M; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2006 Jan; 445(2):199-213. PubMed ID: 16288970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of disulfide bridges and free sulfhydryl groups in human eosinophil granule major basic protein.
    Oxvig C; Gleich GJ; Sottrup-Jensen L
    FEBS Lett; 1994 Mar; 341(2-3):213-7. PubMed ID: 8137941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.