These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
946 related articles for article (PubMed ID: 10864509)
1. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509 [TBL] [Abstract][Full Text] [Related]
2. Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. Skrynnikov NR; Goto NK; Yang D; Choy WY; Tolman JR; Mueller GA; Kay LE J Mol Biol; 2000 Feb; 295(5):1265-73. PubMed ID: 10653702 [TBL] [Abstract][Full Text] [Related]
3. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. Evenäs J; Tugarinov V; Skrynnikov NR; Goto NK; Muhandiram R; Kay LE J Mol Biol; 2001 Jun; 309(4):961-74. PubMed ID: 11399072 [TBL] [Abstract][Full Text] [Related]
4. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. Clore GM; Schwieters CD J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. Ulmer TS; Ramirez BE; Delaglio F; Bax A J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. Pelton JG; Kustu S; Wemmer DE J Mol Biol; 1999 Oct; 292(5):1095-110. PubMed ID: 10512705 [TBL] [Abstract][Full Text] [Related]
7. Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. Choy WY; Tollinger M; Mueller GA; Kay LE J Biomol NMR; 2001 Sep; 21(1):31-40. PubMed ID: 11693566 [TBL] [Abstract][Full Text] [Related]
8. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks. Cierpicki T; Otlewski J J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783 [TBL] [Abstract][Full Text] [Related]
9. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR. Goto NK; Skrynnikov NR; Dahlquist FW; Kay LE J Mol Biol; 2001 May; 308(4):745-64. PubMed ID: 11350172 [TBL] [Abstract][Full Text] [Related]
10. Refinement of NMR structures using implicit solvent and advanced sampling techniques. Chen J; Im W; Brooks CL J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737 [TBL] [Abstract][Full Text] [Related]
11. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? Clore GM; Schwieters CD J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210 [TBL] [Abstract][Full Text] [Related]
12. Backbone-only restraints for fast determination of the protein fold: the role of paramagnetism-based restraints. Cytochrome b562 as an example. Banci L; Bertini I; Felli IC; Sarrou J J Magn Reson; 2005 Feb; 172(2):191-200. PubMed ID: 15649745 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M; Mapelli C; Lee V; Goldfarb V; Friedrichs MS; Meyers CA; Mueller L J Mol Biol; 1997 Apr; 267(4):933-52. PubMed ID: 9135122 [TBL] [Abstract][Full Text] [Related]
14. NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae. Nair M; McIntosh PB; Frenkiel TA; Kelly G; Taylor IA; Smerdon SJ; Lane AN Biochemistry; 2003 Feb; 42(5):1266-73. PubMed ID: 12564929 [TBL] [Abstract][Full Text] [Related]
15. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods. Muskett FW; Kelly GP; Whitford D J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculations. Lee SY; Lee JH; Chang HJ; Cho JM; Jung JW; Lee W Biochemistry; 1999 Feb; 38(8):2340-6. PubMed ID: 10029527 [TBL] [Abstract][Full Text] [Related]
17. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings. Mohana-Borges R; Goto NK; Kroon GJ; Dyson HJ; Wright PE J Mol Biol; 2004 Jul; 340(5):1131-42. PubMed ID: 15236972 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. Martinez-Yamout M; Legge GB; Zhang O; Wright PE; Dyson HJ J Mol Biol; 2000 Jul; 300(4):805-18. PubMed ID: 10891270 [TBL] [Abstract][Full Text] [Related]
20. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. Härd T; Rak A; Allard P; Kloo L; Garber M J Mol Biol; 2000 Feb; 296(1):169-80. PubMed ID: 10656825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]