These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 1086460)

  • 21. Basolateral membrane chloride transport in isolated epithelia of frog skin.
    Stoddard JS; Jakobsson E; Helman SI
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C318-29. PubMed ID: 3876032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship of transepithelial electrical potential to membrane potentials and conductance ratios in frog skin.
    Nagel W; Essig A
    J Membr Biol; 1982; 69(2):125-36. PubMed ID: 6982342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na transport stimulation by novobiocin: transepithelial parameters and evaluation of ENa.
    Rick R; Dörge A; Sesselmann E
    Pflugers Arch; 1988 Mar; 411(3):243-51. PubMed ID: 2454448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cl- permeability of the basolateral membrane of the Rana esculenta epithelium: activation of Cl-/HCO3- exchange by alkaline intracellular pH.
    Lacoste I; Harvey BJ; Ehrenfeld J
    Biochim Biophys Acta; 1991 Mar; 1063(1):103-10. PubMed ID: 1849743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiologic changes associated with potassium depletion of frog skin.
    Nagel W; Pope MB; Peterson K; Civan MM
    J Membr Biol; 1980 Dec; 57(3):235-41. PubMed ID: 6970820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An upper limit to the number of sodium channels in frog skin epithelium.
    Cuthbert AW
    J Physiol; 1973 Feb; 228(3):681-92. PubMed ID: 4540802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Whole-cell and single channel K+ and Cl- currents in epithelial cells of frog skin.
    García-Díaz JF
    J Gen Physiol; 1991 Jul; 98(1):131-61. PubMed ID: 1719124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium.
    Urbach V; van Kerkhove E; Harvey BJ
    J Gen Physiol; 1994 Apr; 103(4):583-604. PubMed ID: 8057079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.
    Biber TU; Sanders ML
    J Gen Physiol; 1973 May; 61(5):529-51. PubMed ID: 4540958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The role of protein kinase C in Na+ transport regulation in the skin of adult frogs and tadpoles of Rana temporaria].
    Krutetskaia ZI; Lebedev OE; Pashina AV
    Tsitologiia; 2003; 45(6):590-5. PubMed ID: 14521090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues.
    Ehrenfeld J; Cragoe EJ; Harvey BJ
    Pflugers Arch; 1987 Jun; 409(1-2):200-7. PubMed ID: 3039454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid activation of KATP channels by aldosterone in principal cells of frog skin.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):111-20. PubMed ID: 9011603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of the entry process for sodium in transporting epithelia as revealed with amiloride.
    Cuthbert AW; Shum WK
    J Physiol; 1976 Mar; 255(3):587-604. PubMed ID: 1083430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium.
    Brodin B; Rytved KA; Nielsen R
    Pflugers Arch; 1996; 433(1-2):16-25. PubMed ID: 9019717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical profiles in the corneal epithelium.
    Klyce SD
    J Physiol; 1972 Oct; 226(2):407-29. PubMed ID: 4538944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for electrogenic Na transport from the cytoplasmatic tissue pool of frog skin epithelium [proceedings].
    Nagel W
    J Physiol; 1978 Nov; 284():146P-147P. PubMed ID: 310456
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.