These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 10864949)

  • 21. Target-derived matricryptins organize cerebellar synapse formation through α3β1 integrins.
    Su J; Stenbjorn RS; Gorse K; Su K; Hauser KF; Ricard-Blum S; Pihlajaniemi T; Fox MA
    Cell Rep; 2012 Aug; 2(2):223-30. PubMed ID: 22884367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuregulin-2 is synthesized by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErbB4.
    Rimer M; Prieto AL; Weber JL; Colasante C; Ponomareva O; Fromm L; Schwab MH; Lai C; Burden SJ
    Mol Cell Neurosci; 2004 Jun; 26(2):271-81. PubMed ID: 15207852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor nerve endings of extraocular muscles of Gobio gobio L.
    Kordylewski L
    Folia Histochem Cytochem (Krakow); 1973; 11(3):333-4. PubMed ID: 4778393
    [No Abstract]   [Full Text] [Related]  

  • 24. The functional organization of motor nerve terminals.
    Slater CR
    Prog Neurobiol; 2015 Nov; 134():55-103. PubMed ID: 26439950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components.
    Carlson SS; Valdez G; Sanes JR
    J Neurochem; 2010 Nov; 115(3):654-66. PubMed ID: 20731762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of the neuromuscular junction: molecules and mechanisms.
    Meier T; Wallace BG
    Bioessays; 1998 Oct; 20(10):819-29. PubMed ID: 9819569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody.
    Astrow SH; Qiang H; Ko CP
    J Neurocytol; 1998 Sep; 27(9):667-81. PubMed ID: 10447241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle.
    Covault J; Sanes JR
    J Cell Biol; 1986 Mar; 102(3):716-30. PubMed ID: 3512581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytotactin is involved in synaptogenesis during regeneration of the frog neuromuscular system.
    Mège RM; Nicolet M; Pinçon-Raymond M; Murawsky M; Rieger F
    Dev Biol; 1992 Feb; 149(2):381-94. PubMed ID: 1370424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibroblast growth factor-5 is expressed in Schwann cells and is not essential for motoneurone survival.
    McGeachie AB; Koishi K; Imamura T; McLennan IS;
    Neuroscience; 2001; 104(3):891-9. PubMed ID: 11440818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing ultrastructure of crustacean and insect neuromuscular junctions.
    Atwood HL; Cooper RL
    J Neurosci Methods; 1996 Oct; 69(1):51-8. PubMed ID: 8912935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical measurements of activity-dependent membrane recycling in motor nerve terminals of mammalian skeletal muscle.
    Ribchester RR; Mao F; Betz WJ
    Proc Biol Sci; 1994 Jan; 255(1342):61-6. PubMed ID: 8153137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aggregates of acetylcholine receptors are not observed under anti-agrin staining schwann cell processes at the frog neuromuscular junction.
    Werle MJ; Jones MA; Stanco AM
    J Neurobiol; 1999 Jul; 40(1):45-54. PubMed ID: 10398070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synaptic nidogen: developmental regulation and role of nidogen-2 at the neuromuscular junction.
    Fox MA; Ho MS; Smyth N; Sanes JR
    Neural Dev; 2008 Sep; 3():24. PubMed ID: 18817539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The heterogeneity of vesicular acetylcholine storage in cholinergic nerve terminals.
    Prior C; Tian L
    Pharmacol Res; 1995 Dec; 32(6):345-53. PubMed ID: 8736485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release.
    Zhu PC; Thureson-Klein A; Klein RL
    Neuroscience; 1986 Sep; 19(1):43-54. PubMed ID: 2431353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles.
    Tomas J; Santafé M; Fenoll R; Mayayo E; Batlle J; Lanuza A; Piera V
    Biol Cell; 1992; 74(3):299-305. PubMed ID: 1628112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-related differences in the branching pattern of the motor nerve terminals in triangularis sterni muscle of the mouse.
    Tomasi J; Fenol R; Santafe M; Mayayo E
    Biol Cell; 1989; 65(3):271-80. PubMed ID: 2752213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation of glial cells and motor neurons during the formation of neuromuscular junctions in cocultures of rat spinal cord explant and human muscle.
    Mars T; Yu KJ; Tang XM; Miranda AF; Grubic Z; Cambi F; King MP
    J Comp Neurol; 2001 Sep; 438(2):239-51. PubMed ID: 11536191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.