These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10865220)

  • 1. A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2000 Jul; 27(1):129-38. PubMed ID: 10865220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Jan; 30(1):267-74. PubMed ID: 11792596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zone-dependent changes in human vertebral trabecular bone: clinical implications.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 May; 30(5):664-9. PubMed ID: 11996902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 1998 Feb; 22(2):153-63. PubMed ID: 9477239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting human vertebral bone strength by vertebral static histomorphometry.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 Mar; 30(3):502-8. PubMed ID: 11882465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of cancellous bone structure: comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume.
    Croucher PI; Garrahan NJ; Compston JE
    J Bone Miner Res; 1996 Jul; 11(7):955-61. PubMed ID: 8797116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus.
    Cortet B; Chappard D; Boutry N; Dubois P; Cotten A; Marchandise X
    Calcif Tissue Int; 2004 Jul; 75(1):23-31. PubMed ID: 15129367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Trabecular bone microarchitecture and male osteoporosis].
    Legrand E; Chappard D; Pascaretti C; Duquenne M; Rohmer V; Basle MF; Audran M
    Morphologie; 1999 Jun; 83(261):35-40. PubMed ID: 10546234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis.
    Legrand E; Chappard D; Pascaretti C; Duquenne M; Krebs S; Rohmer V; Basle MF; Audran M
    J Bone Miner Res; 2000 Jan; 15(1):13-9. PubMed ID: 10646109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae.
    Vesterby A; Mosekilde L; Gundersen HJ; Melsen F; Mosekilde L; Holme K; Sørensen S
    Bone; 1991; 12(3):219-24. PubMed ID: 1910963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age.
    Grote HJ; Amling M; Vogel M; Hahn M; Pösl M; Delling G
    Bone; 1995 Mar; 16(3):301-8. PubMed ID: 7786633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of ewe vertebral cancellous bone compared with histomorphometry and high-resolution computed tomography parameters.
    Mitton D; Cendre E; Roux JP; Arlot ME; Peix G; Rumelhart C; Babot D; Meunier PJ
    Bone; 1998 Jun; 22(6):651-8. PubMed ID: 9626404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology.
    Hordon LD; Raisi M; Aaron JE; Paxton SK; Beneton M; Kanis JA
    Bone; 2000 Aug; 27(2):271-6. PubMed ID: 10913921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in quantitative bone histomorphometry in aging healthy men.
    Clarke BL; Ebeling PR; Jones JD; Wahner HW; O'Fallon WM; Riggs BL; Fitzpatrick LA
    J Clin Endocrinol Metab; 1996 Jun; 81(6):2264-70. PubMed ID: 8964862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens.
    Ritzel H; Amling M; Pösl M; Hahn M; Delling G
    J Bone Miner Res; 1997 Jan; 12(1):89-95. PubMed ID: 9240730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Star volume in bone research. A histomorphometric analysis of trabecular bone structure using vertical sections.
    Vesterby A
    Anat Rec; 1993 Feb; 235(2):325-34. PubMed ID: 8420401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.
    Thomsen JS; Niklassen AS; Ebbesen EN; Brüel A
    Bone; 2013 Nov; 57(1):47-55. PubMed ID: 23899636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age- and region-dependent changes in human lumbar vertebral bone: a histomorphometric study.
    Cvijanovic O; Bobinac D; Zoricic S; Ostojic Z; Maric I; Crncevic-Orlic Z; Kristofic I; Ostojic L
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2370-5. PubMed ID: 15507797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
    Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ
    Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.