BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1086638)

  • 1. Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor.
    Gent-Ruijters ML; Meijere FA; Vries W; Stouthamer AH
    Antonie Van Leeuwenhoek; 1976; 42(3):217-28. PubMed ID: 1086638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum.
    Van Gent-Ruijters ML; DeVries W; Southamer AH
    J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens.
    de Vries W; Rietveld-Struijk RM; Stouthamer AH
    Antonie Van Leeuwenhoek; 1977; 43(2):153-67. PubMed ID: 202192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.
    Schwartz AC; Sporkenbach J
    Arch Microbiol; 1975 Mar; 102(3):261-73. PubMed ID: 168827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria.
    de Vries W; Wijck-Kapteijn WM; Stouthamer AH
    J Gen Microbiol; 1972 Aug; 71(3):515-24. PubMed ID: 4647470
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of nitrate reduction on metabolic products and growth of Propionibacterium acidi-propionici.
    Kaneko M; Ishimoto M
    Z Allg Mikrobiol; 1977; 17(3):211-20. PubMed ID: 878501
    [No Abstract]   [Full Text] [Related]  

  • 7. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria.
    de Vries W; van Wyck-Kapteyn WM; Stouthamer AH
    J Gen Microbiol; 1973 May; 76(1):31-41. PubMed ID: 4353042
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxygen on Propionibacterium shermanii grown in continuous culture.
    Pritchard GG; Wimpenny JW; Morris HA; Lewis MW; Hughes DE
    J Gen Microbiol; 1977 Oct; 102(2):223-33. PubMed ID: 925678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria.
    Köhler P; Bachmann R
    Mol Biochem Parasitol; 1980 Apr; 1(2):75-90. PubMed ID: 7442710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of acetate and propionate formation upon aeration of resting cells of the anaerobic Propionibacterium shermanii: evidence of the Pasteur reaction.
    Schwartz AC; Mertens B; Voss KW; Hahn H
    Z Allg Mikrobiol; 1976; 16(2):123-31. PubMed ID: 969569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin.
    Macy J; Probst I; Gottschalk G
    J Bacteriol; 1975 Aug; 123(2):436-42. PubMed ID: 1150622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrate, fumarate, and oxygen on the formation of the membrane-bound electron transport system of Haemophilus parainfluenzae.
    Sinclair PR; White DC
    J Bacteriol; 1970 Feb; 101(2):365-72. PubMed ID: 4313051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway of Propionibacterium growing with oxygen: enzymes, 13C NMR analysis, and its application for vitamin B12 production with periodic fermentation.
    Ye K; Shijo M; Miyano K; Shimizu K
    Biotechnol Prog; 1999; 15(2):201-7. PubMed ID: 10194395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functioning of cytochrome b in the electron transport to furmarate in Propionibacterium freudenreichii and Propionibacterium pentosaceum.
    De Vries W; Aleem MI; Hemrika-Wagner A; Stouthamer AH
    Arch Microbiol; 1977 Apr; 112(3):271-6. PubMed ID: 871228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of hydrogenase and nitrate reductase in Campylobacter sputorum subsp. bubulus.
    de Vries W; van Berchum H; Stouthamer AH
    Antonie Van Leeuwenhoek; 1984; 50(1):63-73. PubMed ID: 6372687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of carbon and electron flow in Propionispira arboris: relationship of catabolic enzyme levels to carbon substrates fermented during propionate formation via the methylmalonyl coenzyme A pathway.
    Thompson TE; Zeikus JG
    J Bacteriol; 1988 Sep; 170(9):3996-4000. PubMed ID: 3410821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA.
    Seeliger S; Janssen PH; Schink B
    FEMS Microbiol Lett; 2002 May; 211(1):65-70. PubMed ID: 12052552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on nitrate reductase from Propionibacterium acidi-propionici.
    Kaneko M; Ishimoto M
    J Biochem; 1978 Jan; 83(1):191-200. PubMed ID: 624703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport chain from glycerol 3-phosphate to nitrate in Escherichia coli.
    Miki K; Lin EC
    J Bacteriol; 1975 Dec; 124(3):1288-94. PubMed ID: 127786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.