BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 10866939)

  • 1. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
    Cárdenas AE; Coalson RD; Kurnikova MG
    Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
    Kurnikova MG; Coalson RD; Graf P; Nitzan A
    Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
    Coalson RD; Kurnikova MG
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):81-93. PubMed ID: 15816174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K; Elber R
    Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion fluxes through nanopores and transmembrane channels.
    Bordin JR; Diehl A; Barbosa MC; Levin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031914. PubMed ID: 22587130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics.
    Corry B; Kuyucak S; Chung SH
    Biophys J; 2000 May; 78(5):2364-81. PubMed ID: 10777733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
    Thompson N; Thompson G; Cole CD; Cotten M; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1245-54. PubMed ID: 11509341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical descriptions of experimental selectivity measurements in ion channels.
    Gillespie D; Eisenberg RS
    Eur Biophys J; 2002 Oct; 31(6):454-66. PubMed ID: 12355255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge density identification in ion channels.
    Wolansky G; Taflia A
    J Chem Phys; 2010 Dec; 133(23):234113. PubMed ID: 21186864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of protein flexibility on the electrostatic energy landscape in gramicidin A.
    Corry B; Chung SH
    Eur Biophys J; 2005 May; 34(3):208-16. PubMed ID: 15536565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lipid dependence in the formation of twin ion channels.
    Al-Momani L; Reiss P; Koert U
    Biochem Biophys Res Commun; 2005 Mar; 328(1):342-7. PubMed ID: 15670789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-consistent analytic solution for the current and the access resistance in open ion channels.
    Luchinsky DG; Tindjong R; Kaufman I; McClintock PV; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021925. PubMed ID: 19792169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The gramicidin ion channel: a model membrane protein.
    Kelkar DA; Chattopadhyay A
    Biochim Biophys Acta; 2007 Sep; 1768(9):2011-25. PubMed ID: 17572379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.