These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10866941)

  • 1. DNA rings with multiple energy minima.
    Furrer PB; Manning RS; Maddocks JH
    Biophys J; 2000 Jul; 79(1):116-36. PubMed ID: 10866941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of circular DNA topological states.
    Chen H; Liu Y; Zhou Z; Hu L; Ou-Yang ZC; Yan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041926. PubMed ID: 19518275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Link, twist, energy, and the stability of DNA minicircles.
    Hoffman KA; Manning RS; Maddocks JH
    Biopolymers; 2003 Oct; 70(2):145-57. PubMed ID: 14517904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation.
    Gebe JA; Schurr JM
    Biopolymers; 1996 Apr; 38(4):493-503. PubMed ID: 8867211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of intrinsic curvature on conformational properties of circular DNA.
    Katritch V; Vologodskii A
    Biophys J; 1997 Mar; 72(3):1070-9. PubMed ID: 9138556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles.
    Sivolob A; De Lucia F; Alilat M; Prunell A
    J Mol Biol; 2000 Jan; 295(1):55-69. PubMed ID: 10623508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of nonlocal interactions to DNA elasticity.
    Eslami-Mossallam B; Ejtehadi MR
    J Chem Phys; 2011 Mar; 134(12):125106. PubMed ID: 21456706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes.
    Swigon D; Coleman BD; Tobias I
    Biophys J; 1998 May; 74(5):2515-30. PubMed ID: 9591678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling DNA loops using continuum and statistical mechanics.
    Balaeff A; Koudella CR; Mahadevan L; Schulten K
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1355-71. PubMed ID: 15306455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of protein-induced structural changes in closed circular DNA.
    Zhang P; Tobias I; Olson WK
    J Mol Biol; 1994 Sep; 242(3):271-90. PubMed ID: 8089847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization.
    Zhang Y; Crothers DM
    Biophys J; 2003 Jan; 84(1):136-53. PubMed ID: 12524271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling DNA hydration: comparison of calculated and experimental hydration properties of nuclic acid bases.
    Poltev VI; Malenkov GG; Gonzalez EJ; Teplukhin AV; Rein R; Shibata M; Miller JH
    J Biomol Struct Dyn; 1996 Feb; 13(4):717-26. PubMed ID: 8906892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA curvature in solution measured by fluorescence resonance energy transfer.
    Tóth K; Sauermann V; Langowski J
    Biochemistry; 1998 Jun; 37(22):8173-9. PubMed ID: 9609713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling protein-induced configurational changes in DNA minicircles.
    Martino JA; Olson WK
    Biopolymers; 1997 Apr; 41(4):419-30. PubMed ID: 9080777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of spontaneous twist on DNA minicircles.
    Medalion S; Kessler DA; Rabin Y
    Biophys J; 2010 Nov; 99(9):2987-94. PubMed ID: 21044596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA.
    Le Bret M
    Biopolymers; 1980 Mar; 19(3):619-37. PubMed ID: 7357072
    [No Abstract]   [Full Text] [Related]  

  • 18. Characteristic length of the knotting probability revisited.
    Uehara E; Deguchi T
    J Phys Condens Matter; 2015 Sep; 27(35):354104. PubMed ID: 26292079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Conformational features of circular DNA with natural curvature].
    Katrich VIu; Vologodskiĭ AV
    Biofizika; 1996; 41(2):536-8. PubMed ID: 8723675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling chain folding in protein-constrained circular DNA.
    Martino JA; Olson WK
    Biophys J; 1998 May; 74(5):2491-500. PubMed ID: 9591675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.