BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10867142)

  • 21. Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding.
    Liehr T; Starke H; Heller A; Kosyakova N; Mrasek K; Gross M; Karst C; Steinhaeuser U; Hunstig F; Fickelscher I; Kuechler A; Trifonov V; Romanenko SA; Weise A
    Cytogenet Genome Res; 2006; 114(3-4):240-4. PubMed ID: 16954660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomal bar codes produced by multicolor fluorescence in situ hybridization with multiple YAC clones and whole chromosome painting probes.
    Lengauer C; Speicher MR; Popp S; Jauch A; Taniwaki M; Nagaraja R; Riethman HC; Donis-Keller H; D'Urso M; Schlessinger D
    Hum Mol Genet; 1993 May; 2(5):505-12. PubMed ID: 8518787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reciprocal Translocation Analysis with Whole Chromosome Painting for FISH.
    Haskins JS; Kato TA
    Methods Mol Biol; 2019; 1984():117-122. PubMed ID: 31267427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding.
    Mrasek K; Heller A; Rubtsov N; Trifonov V; Starke H; Claussen U; Liehr T
    Int J Mol Med; 2003 Aug; 12(2):139-46. PubMed ID: 12851708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosome analysis of esophageal squamous cell carcinoma cell line KYSE 410-4 by repetitive multicolor fluorescence in situ hybridization.
    Yang Y; Chu J; Wu Y; Luo M; Xu X; Han Y; Cai Y; Zhan Q; Wang M
    J Genet Genomics; 2008 Jan; 35(1):11-6. PubMed ID: 18222404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G-banding and molecular cytogenetic analyses of marginal zone lymphoma.
    Aamot HV; Micci F; Holte H; Delabie J; Heim S
    Br J Haematol; 2005 Sep; 130(6):890-901. PubMed ID: 16156859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward a multicolor chromosome bar code for the entire human karyotype by fluorescence in situ hybridization.
    Müller S; Rocchi M; Ferguson-Smith MA; Wienberg J
    Hum Genet; 1997 Aug; 100(2):271-8. PubMed ID: 9254863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinterpretation of G-banded complex karyotypes by fluorescence in situ hybridization with chromosome-specific DNA painting probes and alpha-satellite centromere-specific DNA probes in malignant hematological disorders.
    Shi G; Weh HJ; Hossfeld DK
    Am J Hematol; 1997 Jun; 55(2):69-76. PubMed ID: 9209001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of M-FISH and M-BAND to define chromosome abnormalities.
    Mackinnon RN; Chudoba I
    Methods Mol Biol; 2011; 730():203-18. PubMed ID: 21431644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple efficient method of sequential G-banding and fluorescence in situ hybridization.
    Zhao L; Hayes K; Glassman A
    Cancer Genet Cytogenet; 1998 May; 103(1):62-4. PubMed ID: 9595047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of chromosome 8 abnormalities by fluorescence in situ hybridization in childhood B-acute lymphoblastic leukemia/non-Hodgkin lymphoma.
    Nishida K; Ritterbach J; Repp R; Harbott J; Lampert F
    Cancer Genet Cytogenet; 1995 Jan; 79(1):8-14. PubMed ID: 7850758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural unbalanced chromosome rearrangements resolved by comparative genomic hybridization.
    Daniely M; Barkai G; Goldman B; Aviram-Goldring A
    Cytogenet Cell Genet; 1999; 86(1):51-5. PubMed ID: 10516433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Usefulness of classic cytogenetic testing compared to fluorescence in situ hybridization in genetic diagnosis of 58 patients with myelodysplastic syndromes.
    Skonieczka K; Duszeńko E; Wyrowińska E; Haus O
    Pol Arch Med Wewn; 2009 Jun; 119(6):366-72. PubMed ID: 19694218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous obtention of an intense G-banding and chromosome painting.
    Richard F; Dutrillaux B
    Cytogenet Cell Genet; 1996; 74(1-2):124-6. PubMed ID: 8893818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of Array Comparative Genomic Hybridization for the Diagnosis of DiGeorge Syndrome in Saudi Arabian Population.
    Bahamat AA; Assidi M; Lary SA; Almughamsi MM; Peer Zada AA; Chaudhary A; Abuzenadah A; Abu-Elmagd M; Al-Qahtani M
    Cytogenet Genome Res; 2018; 154(1):20-29. PubMed ID: 29455205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analysis of complex chromosomal aberrations in seven cases of myelodysplastic syndromes by M-FISH and whole chromosome painting.
    Li JY; Xiao B; Chen LJ; Pan JL; Xu W; Qiu HR; Li L; Xue YQ
    Int J Hematol; 2008 Nov; 88(4):369-373. PubMed ID: 18991056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid generation of region specific probes by chromosome microdissection and their application.
    Meltzer PS; Guan XY; Burgess A; Trent JM
    Nat Genet; 1992 Apr; 1(1):24-8. PubMed ID: 1301994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization.
    Gribble SM; Roberts I; Grace C; Andrews KM; Green AR; Nacheva EP
    Cancer Genet Cytogenet; 2000 Apr; 118(1):1-8. PubMed ID: 10731582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB).
    Iourov IY; Liehr T; Vorsanova SG; Kolotii AD; Yurov YB
    Chromosome Res; 2006; 14(3):223-9. PubMed ID: 16628493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards unlimited colors for fluorescence in-situ hybridization (FISH).
    Müller S; Neusser M; Wienberg J
    Chromosome Res; 2002; 10(3):223-32. PubMed ID: 12067211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.