BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10867229)

  • 1. An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    FEMS Microbiol Lett; 2000 Jul; 188(1):23-7. PubMed ID: 10867229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization.
    Gage DJ; Long SR
    J Bacteriol; 1998 Nov; 180(21):5739-48. PubMed ID: 9791127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti.
    Pellock BJ; Teplitski M; Boinay RP; Bauer WD; Walker GC
    J Bacteriol; 2002 Sep; 184(18):5067-76. PubMed ID: 12193623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of phosphate assimilation in Rhizobium (Sinorhizobium) meliloti.
    Bardin SD; Finan TM
    Genetics; 1998 Apr; 148(4):1689-700. PubMed ID: 9560387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production.
    Schäper S; Steinchen W; Krol E; Altegoer F; Skotnicka D; Søgaard-Andersen L; Bange G; Becker A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):E4822-E4831. PubMed ID: 28559336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
    Barnett MJ; Long SR
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158240
    [No Abstract]   [Full Text] [Related]  

  • 8. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA.
    Baumgarth B; Bartels FW; Anselmetti D; Becker A; Ros R
    Microbiology (Reading); 2005 Jan; 151(Pt 1):259-268. PubMed ID: 15632443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor.
    Bringhurst RM; Cardon ZG; Gage DJ
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4540-5. PubMed ID: 11274355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Garcia PP; Bringhurst RM; Arango Pinedo C; Gage DJ
    J Bacteriol; 2010 Nov; 192(21):5725-35. PubMed ID: 20817764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti.
    Oláh B; Kiss E; Györgypál Z; Borzi J; Cinege G; Csanádi G; Batut J; Kondorosi A; Dusha I
    Mol Plant Microbe Interact; 2001 Jul; 14(7):887-94. PubMed ID: 11437262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon.
    Capela D; Carrere S; Batut J
    Appl Environ Microbiol; 2005 Aug; 71(8):4910-3. PubMed ID: 16085895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR analysis of expR gene regulating biosynthesis of exopolysaccharides in Sinorhizobium meliloti.
    Sorroche FG; Giordano W
    Biochem Mol Biol Educ; 2012; 40(2):108-11. PubMed ID: 22419591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter.
    Chao TC; Becker A; Buhrmester J; Pühler A; Weidner S
    J Bacteriol; 2004 Jun; 186(11):3609-20. PubMed ID: 15150249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MucR is necessary for galactoglucan production in Sinorhizobium meliloti EFB1.
    Martín M; Lloret J; Sánchez-Contreras M; Bonilla I; Rivilla R
    Mol Plant Microbe Interact; 2000 Jan; 13(1):129-35. PubMed ID: 10656595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MucR and mucS activate exp genes transcription and galactoglucan production in Sinorhizobium meliloti EFB1.
    Lloret J; Martín M; Oruezabal RI; Bonilla I; Rivilla R
    Mol Plant Microbe Interact; 2002 Jan; 15(1):54-9. PubMed ID: 11843303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression.
    Hoang HH; Becker A; González JE
    J Bacteriol; 2004 Aug; 186(16):5460-72. PubMed ID: 15292148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.
    Luo L; Yao SY; Becker A; Rüberg S; Yu GQ; Zhu JB; Cheng HP
    J Bacteriol; 2005 Jul; 187(13):4562-72. PubMed ID: 15968067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
    Mitra RM; Long SR
    Plant Physiol; 2004 Feb; 134(2):595-604. PubMed ID: 14739349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.