These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10867255)

  • 1. Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase.
    Welin-Berger K; Bergenståhl B
    Int J Pharm; 2000 May; 200(2):249-60. PubMed ID: 10867255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.
    Henry JV; Fryer PJ; Frith WJ; Norton IT
    J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of emulsion interfacial membrane characteristics on Ostwald ripening in a model emulsion.
    Han SW; Song HY; Moon TW; Choi SJ
    Food Chem; 2018 Mar; 242():91-97. PubMed ID: 29037741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition.
    Jang Y; Park J; Song HY; Choi SJ
    J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color changes in hydrocarbon oil-in-water emulsions caused by Ostwald ripening.
    Weiss J; McClements DJ
    J Agric Food Chem; 2001 Sep; 49(9):4372-7. PubMed ID: 11559140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Ostwald ripening in fluorocarbon emulsions by sedimentation field-flow fractionation.
    Arlauskas RA; Klein DH; Weers JG
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(4):1317-23. PubMed ID: 7849939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ostwald ripening of water-in-hydrocarbon emulsions.
    Jiao J; Burgess DJ
    J Colloid Interface Sci; 2003 Aug; 264(2):509-16. PubMed ID: 16256672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Ostwald Ripening in Emulsions via Coarse-Grained Simulations.
    Khedr A; Striolo A
    J Chem Theory Comput; 2019 Sep; 15(9):5058-5068. PubMed ID: 31411875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils.
    McClements DJ; Henson L; Popplewell LM; Decker EA; Choi SJ
    J Food Sci; 2012 Jan; 77(1):C33-8. PubMed ID: 22133014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions.
    Zeeb B; Gibis M; Fischer L; Weiss J
    J Colloid Interface Sci; 2012 Dec; 387(1):65-73. PubMed ID: 22958854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase.
    Taylor P
    Adv Colloid Interface Sci; 2003 Dec; 106():261-85. PubMed ID: 14672850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micellization and gelation in block copolymer systems containing local anesthetics.
    Scherlund M; Brodin A; Malmsten M
    Int J Pharm; 2000 Dec; 211(1-2):37-49. PubMed ID: 11137337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the type and concentration of hydrocolloids on Ostwald ripening of emulsions stabilized with small molecular and non-ionic surfactants.
    Park W; Park J; Im S; Choi SJ
    Food Chem; 2023 Jun; 411():135504. PubMed ID: 36682162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-liquid miscibility gaps in drug-water binary systems: crystal structure and thermodynamic properties of prilocaine and the temperature-composition phase diagram of the prilocaine-water system.
    Rietveld IB; Perrin MA; Toscani S; Barrio M; Nicolai B; Tamarit JL; Ceolin R
    Mol Pharm; 2013 Apr; 10(4):1332-9. PubMed ID: 23339548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil.
    Trujillo-Cayado LA; Santos J; Calero N; Alfaro-Rodríguez MC; Muñoz J
    J Sci Food Agric; 2020 Mar; 100(4):1671-1677. PubMed ID: 31802496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of Ostwald ripening in active emulsions.
    Zwicker D; Hyman AA; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012317. PubMed ID: 26274171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: comparative study.
    Mora-Huertas CE; Garrigues O; Fessi H; Elaissari A
    Eur J Pharm Biopharm; 2012 Jan; 80(1):235-9. PubMed ID: 21983604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ostwald ripening of oil-in-water emulsions stabilized by phenoxy-substituted dextrans.
    Sadtler VM; Imbert P; Dellacherie E
    J Colloid Interface Sci; 2002 Oct; 254(2):355-61. PubMed ID: 12702408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surfactant structure on the contribution of micelles to Ostwald ripening in oil-in-water emulsions.
    Ariyaprakai S; Dungan SR
    J Colloid Interface Sci; 2010 Mar; 343(1):102-8. PubMed ID: 20042193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.