BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10867292)

  • 1. Characterizing non-linearity in the cochlear microphonic using the instantaneous frequency.
    Chertoff ME; Lerner D; Amani-Taleshi D; Nagai Y
    Hear Res; 2000 Jul; 145(1-2):190-202. PubMed ID: 10867292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of inner hair cell loss on the instantaneous frequency of the cochlear microphonic.
    Chertoff ME; Amani-Taleshi D; Guo Y; Burkard R
    Hear Res; 2002 Dec; 174(1-2):93-100. PubMed ID: 12433400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.
    Patuzzi R; Moleirinho A
    Hear Res; 1998 Nov; 125(1-2):1-16. PubMed ID: 9833960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea.
    McAnally KI; Brown M; Clark GM
    Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro.
    Chan DK; Hudspeth AJ
    Nat Neurosci; 2005 Feb; 8(2):149-55. PubMed ID: 15643426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone.
    Choi CH; Chertoff ME; Bian L; Lerner D
    J Acoust Soc Am; 2004 Nov; 116(5):2996-3007. PubMed ID: 15603145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability.
    Patuzzi RB; Thompson ML
    Hear Res; 1991 Jul; 54(1):45-58. PubMed ID: 1917716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse propagation of sounds in the intact cochlea.
    Ren T; Porsov E
    J Neurophysiol; 2010 Dec; 104(6):3732; author reply 3733. PubMed ID: 21160019
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in cochlear mechanics during vocalization: evidence for a phasic medial efferent effect.
    Goldberg RL; Henson OW
    Hear Res; 1998 Aug; 122(1-2):71-81. PubMed ID: 9714576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear microphonic responses to acoustic clicks in guinea pig and their relation with microphonic responses to pure tones.
    Echeverría EL; Robles LW
    J Acoust Soc Am; 1983 Feb; 73(2):592-601. PubMed ID: 6841799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the generation of the cochlear microphonic.
    Ayat M; Teal PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7168-71. PubMed ID: 24111398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salicylate ototoxicity and its implications for cochlear microphonic potential generation.
    Peleg U; Perez R; Freeman S; Sohmer H
    J Basic Clin Physiol Pharmacol; 2007; 18(3):173-88. PubMed ID: 17970566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytic approach to identifying the sources of the low-frequency round window cochlear response.
    Kamerer AM; Chertoff ME
    Hear Res; 2019 Apr; 375():53-65. PubMed ID: 30808536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cochlear amplifier and Ca2+ current-driven active stereocilia motion.
    Ren T
    Nat Neurosci; 2005 Feb; 8(2):132-4. PubMed ID: 15682184
    [No Abstract]   [Full Text] [Related]  

  • 18. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique.
    Bian L; Chertoff ME
    J Acoust Soc Am; 1998 Oct; 104(4):2261-71. PubMed ID: 10491690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics.
    Patuzzi RB
    Hear Res; 1987; 30(1):73-82. PubMed ID: 3680056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
    Charaziak KK; Siegel JH; Shera CA
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):401-419. PubMed ID: 30014309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.