BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 10867656)

  • 1. Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation.
    Wan J; Stenkamp DL
    J Comp Neurol; 2000 Jul; 423(2):227-42. PubMed ID: 10867656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic.
    Stenkamp DL; Hisatomi O; Barthel LK; Tokunaga F; Raymond PA
    Invest Ophthalmol Vis Sci; 1996 Feb; 37(2):363-76. PubMed ID: 8603841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina.
    Zygar CA; Colbert S; Yang D; Fernald RD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):91-100. PubMed ID: 15617759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal expression of cone opsins during monkey retinal development.
    Bumsted K; Jasoni C; Szél A; Hendrickson A
    J Comp Neurol; 1997 Feb; 378(1):117-34. PubMed ID: 9120051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits.
    Sherry DM; Wang MM; Bates J; Frishman LJ
    J Comp Neurol; 2003 Oct; 465(4):480-98. PubMed ID: 12975811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zebrafish ultraviolet cone opsin reported previously is expressed in rods.
    Raymond PA; Barthel LK; Stenkamp DL
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):948-50. PubMed ID: 8603882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina.
    Stenkamp DL; Barthel LK; Raymond PA
    J Comp Neurol; 1997 Jun; 382(2):272-84. PubMed ID: 9183694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish.
    Raymond PA; Barthel LK; Curran GA
    J Comp Neurol; 1995 Sep; 359(4):537-50. PubMed ID: 7499546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS; Lewis GP; Geller SF; Fisher SK
    Mol Vis; 2002 Apr; 8():114-8. PubMed ID: 11979236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential genesis and determination of cone and rod photoreceptors in Xenopus.
    Chang WS; Harris WA
    J Neurobiol; 1998 Jun; 35(3):227-44. PubMed ID: 9622007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina.
    Wu DM; Schneiderman T; Burgett J; Gokhale P; Barthel L; Raymond PA
    Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):2115-24. PubMed ID: 11481280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor development in premetamorphic and metamorphic Xenopus laevis.
    Parker RO; Mccarragher B; Crouch R; Darden AG
    Anat Rec (Hoboken); 2010 Mar; 293(3):383-7. PubMed ID: 20091886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina.
    Raymond PA; Barthel LK
    Int J Dev Biol; 2004; 48(8-9):935-45. PubMed ID: 15558484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina.
    Roberts MR; Hendrickson A; McGuire CR; Reh TA
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2897-904. PubMed ID: 16043864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lamina formation in the Mongolian gerbil retina (Meriones unguiculatus).
    Bytyqi AH; Layer PG
    Anat Embryol (Berl); 2005 Feb; 209(3):217-25. PubMed ID: 15668778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta aguti).
    Rocha FA; Ahnelt PK; Peichl L; Saito CA; Silveira LC; De Lima SM
    Vis Neurosci; 2009; 26(2):167-75. PubMed ID: 19250601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone accelerates opsin expression during early photoreceptor differentiation and induces opsin switching in differentiated TRα-expressing cones of the salmonid retina.
    Gan KJ; Novales Flamarique I
    Dev Dyn; 2010 Oct; 239(10):2700-13. PubMed ID: 20730870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.