These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ag-AgCl electrode noise in high-resolution ECG measurements. Fernández M; Pallás-Areny R Biomed Instrum Technol; 2000; 34(2):125-30. PubMed ID: 10820641 [TBL] [Abstract][Full Text] [Related]
3. Time based measurement of the impedance of the skin-electrode interface for dry electrode ECG recording. Dozio R; Baba A; Assambo C; Burke MJ Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5001-4. PubMed ID: 18003129 [TBL] [Abstract][Full Text] [Related]
4. Time and frequency dependence of disposable ECG electrode-skin impedance. Olson WH; Schmincke DR; Henley BL Med Instrum; 1979; 13(5):269-72. PubMed ID: 502923 [TBL] [Abstract][Full Text] [Related]
5. The electrical characteristics of some commercial ECG electrodes. Patterson RP J Electrocardiol; 1978 Jan; 11(1):23-6. PubMed ID: 621452 [TBL] [Abstract][Full Text] [Related]
6. ECG electrodes. A study of electrical and mechanical long-term properties. Ask P; Oberg PA; Odman S; Tenland T; Skogh M Acta Anaesthesiol Scand; 1979 Apr; 23(2):189-206. PubMed ID: 442948 [TBL] [Abstract][Full Text] [Related]
9. A comparative evaluation between conditions of the wrist band capacitively-coupled ECG recording through signal-to-noise ratio. Nakamura H; Shimada K; Fujie T Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5887-90. PubMed ID: 18003353 [TBL] [Abstract][Full Text] [Related]
10. Determining the input impedance of ECG amplifiers using accurate electrode modelling. Maji S; Burke MJ Biomed Phys Eng Express; 2020 Jan; 6(1):015030. PubMed ID: 33438618 [TBL] [Abstract][Full Text] [Related]
11. A practical approach to electrode-skin impedance unbalance measurement. Spinelli EM; Mayosky MA; Pallás-Areny R IEEE Trans Biomed Eng; 2006 Jul; 53(7):1451-3. PubMed ID: 16830954 [TBL] [Abstract][Full Text] [Related]
12. Reduction of skin stretch induced motion artifacts in electrocardiogram monitoring using adaptive filtering. Liu Y; Pecht MG Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6045-8. PubMed ID: 17945928 [TBL] [Abstract][Full Text] [Related]
13. A motion artifact generation and assessment system for the rapid testing of surface biopotential electrodes. Cömert A; Hyttinen J Physiol Meas; 2015 Jan; 36(1):1-25. PubMed ID: 25500614 [TBL] [Abstract][Full Text] [Related]
15. A technicians' perspective: tips and techniques for using disposable tab electrocardiogram electrodes; an easy to remember method for preventing electrocardiogram lead interchange. Coleman ME J Electrocardiol; 2006 Oct; 39(4):355-7. PubMed ID: 16697398 [No Abstract] [Full Text] [Related]
16. A comparison of gel-to-gel and skin measurements of electrode impedance. Klingler DR; Schoenberg AA; Worth NP; Egleston CF; Burkart JA Med Instrum; 1979; 13(5):266-8. PubMed ID: 502922 [TBL] [Abstract][Full Text] [Related]
17. Skin-Potential Variation Insensitive Dry Electrodes for ECG Recording. Pei W; Zhang H; Wang Y; Guo X; Xing X; Huang Y; Xie Y; Yang X; Chen H IEEE Trans Biomed Eng; 2017 Feb; 64(2):463-470. PubMed ID: 27164569 [TBL] [Abstract][Full Text] [Related]
18. Saturation of the right-leg drive amplifier in low-voltage ECG monitors. Freeman DK; Gatzke RD; Mallas G; Chen Y; Brouse CJ IEEE Trans Biomed Eng; 2015 Jan; 62(1):323-30. PubMed ID: 25181288 [TBL] [Abstract][Full Text] [Related]
19. Intraindividual variability in electrocardiograms. Schijvenaars BJ; van Herpen G; Kors JA J Electrocardiol; 2008; 41(3):190-6. PubMed ID: 18358483 [TBL] [Abstract][Full Text] [Related]
20. Quantification of motion artifact in ECG electrode design. Kearney K; Thomas C; McAdams E Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1533-6. PubMed ID: 18002260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]