BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10868688)

  • 21. [N-acetyltransferase genetic polymorphism and its role in the development of neoplastic disease].
    Lutz W
    Med Pr; 2000; 51(3):277-84. PubMed ID: 11002474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Biomarkers of gentotoxic risk and metabolic polymorphism].
    Pavanello S; Clonfero E
    Med Lav; 2000; 91(5):431-69. PubMed ID: 11189784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TNR/11q#1 trinucleotide (GCC)n repeat alleles and predisposition to acute and chronic leukemia.
    Klinkov AA; Nikitin EA; Maiorova OV; Ivanov MA; Strelnikov VV; Babenko OV; Zemlyakova VV; Kuznetsova EB; Zaletayev DV
    Ann Hum Genet; 2004 Jul; 68(Pt 4):362-6. PubMed ID: 15225161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymorphic NATs and cancer predisposition.
    Hirvonen A
    IARC Sci Publ; 1999; (148):251-70. PubMed ID: 10493262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic polymorphisms in N-acetyltransferase-2 and microsomal epoxide hydrolase, cumulative cigarette smoking, and lung cancer.
    Zhou W; Liu G; Thurston SW; Xu LL; Miller DP; Wain JC; Lynch TJ; Su L; Christiani DC
    Cancer Epidemiol Biomarkers Prev; 2002 Jan; 11(1):15-21. PubMed ID: 11815396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-Acetyltransferase 2 (NAT2) polymorphism as a risk modifier of susceptibility to pediatric acute lymphoblastic leukemia.
    Kamel AM; Ebid GT; Moussa HS
    Tumour Biol; 2015 Aug; 36(8):6341-8. PubMed ID: 25804798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms.
    Infante-Rivard C; Labuda D; Krajinovic M; Sinnett D
    Epidemiology; 1999 Sep; 10(5):481-7. PubMed ID: 10468419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymorphisms of drug-metabolizing enzymes and risk of childhood acute lymphoblastic leukemia.
    Pakakasama S; Mukda E; Sasanakul W; Kadegasem P; Udomsubpayakul U; Thithapandha A; Hongeng S
    Am J Hematol; 2005 Jul; 79(3):202-5. PubMed ID: 15981231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of genetic polymorphisms of xenobiotic metabolizing enzymes on the risk of developing leukemia in a Tunisian population.
    Ouerhani S; Nefzi MA; Menif S; Safra I; Douzi K; Fouzai C; Ben Ghorbel G; Ben Bahria I; Ben Ammar Elgaaied A; Abbes S
    Bull Cancer; 2011 Dec; 98(12):95-106. PubMed ID: 22146408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis.
    Hein DW
    Mutat Res; 2002 Sep; 506-507():65-77. PubMed ID: 12351146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction.
    Taylor JA; Umbach DM; Stephens E; Castranio T; Paulson D; Robertson C; Mohler JL; Bell DA
    Cancer Res; 1998 Aug; 58(16):3603-10. PubMed ID: 9721868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAT1*10 and NAT1*11 polymorphisms and breast cancer risk.
    Millikan RC
    Cancer Epidemiol Biomarkers Prev; 2000 Feb; 9(2):217-9. PubMed ID: 10698485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic polymorphisms of arylamine N-acetyltransferases 1 and 2 and the likelihood of developing pediatric acute lymphoblastic leukemia.
    Hernández-González O; Ortiz-Zamudio JJ; Rodríguez-Pinal CJ; Alvarado-Morales I; Martínez-Jiménez VDC; Salazar-González RA; Correa-González LC; Gómez R; Portales-Pérez DP; Milán-Segovia RDC
    Leuk Lymphoma; 2018 Aug; 59(8):1968-1975. PubMed ID: 29214875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-acetylation polymorphism in patients with lung cancer and its association with p53 gene mutation.
    Oyama T; Kawamoto T; Mizoue T; Yasumoto K; Kodama Y; Mitsudomi T
    Anticancer Res; 1997; 17(1B):577-81. PubMed ID: 9066583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pilot study testing the association between N-acetyltransferases 1 and 2 and risk of oral squamous cell carcinoma in Japanese people.
    Katoh T; Kaneko S; Boissy R; Watson M; Ikemura K; Bell DA
    Carcinogenesis; 1998 Oct; 19(10):1803-7. PubMed ID: 9806162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women.
    van der Hel OL; Peeters PH; Hein DW; Doll MA; Grobbee DE; Kromhout D; Bueno de Mesquita HB
    Pharmacogenetics; 2003 Jul; 13(7):399-407. PubMed ID: 12835615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Genetic determinants of childhood leukemia].
    Sinnett D; N'Diaye N; Labuda D; Krajinovic M
    Bull Cancer; 2006 Sep; 93(9):857-65. PubMed ID: 16980228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic susceptibility to breast cancer in French-Canadians: role of carcinogen-metabolizing enzymes and gene-environment interactions.
    Krajinovic M; Ghadirian P; Richer C; Sinnett H; Gandini S; Perret C; Lacroix A; Labuda D; Sinnett D
    Int J Cancer; 2001 Apr; 92(2):220-5. PubMed ID: 11291049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymorphisms of arylamine N-acetyltransferase (NAT1 and NAT2) and larynx cancer susceptibility.
    Varzim G; Monteiro E; Silva R; Pinheiro C; Lopes C
    ORL J Otorhinolaryngol Relat Spec; 2002; 64(3):206-12. PubMed ID: 12037388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular genetic basis of rapid and slow acetylation in mice.
    Martell KJ; Vatsis KP; Weber WW
    Mol Pharmacol; 1991 Aug; 40(2):218-27. PubMed ID: 1875909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.