BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10868736)

  • 1. Regional hyperkalemia increases ventricular defibrillation energy requirements: role of electrical heterogeneity in defibrillation.
    Sims JJ; Miller AW; Ujhelyi MR
    J Cardiovasc Electrophysiol; 2000 Jun; 11(6):634-41. PubMed ID: 10868736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of electrical heterogeneity impairs ventricular defibrillation: an effect specific to regional conduction velocity slowing.
    Ujhelyi MR; Sims JJ; Miller AW
    Circulation; 1999 Dec 21-28; 100(25):2534-40. PubMed ID: 10604892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional gap junction inhibition increases defibrillation thresholds.
    Sims JJ; Schoff KL; Loeb JM; Wiegert NA
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H10-6. PubMed ID: 12623782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defibrillation energy requirements and electrical heterogeneity during total body hypothermia.
    Ujhelyi MR; Sims JJ; Dubin SA; Vender J; Miller AW
    Crit Care Med; 2001 May; 29(5):1006-11. PubMed ID: 11378613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-dose lidocaine does not affect defibrillation efficacy: implications for defibrillation mechanisms.
    Ujhelyi MR; Sims JJ; Miller AW
    Am J Physiol; 1998 Apr; 274(4):H1113-20. PubMed ID: 9575914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological background of individual variability in electrical defibrillation efficacy.
    Murakawa Y; Yamashita T; Ajiki K; Sezaki K; Kanese Y; Omata M
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1094-8. PubMed ID: 8853346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical heterogeneity and arrhythmogenesis: importance of conduction velocity dispersion.
    Sims JJ; Miller AW; Ujhelyi MR
    J Cardiovasc Pharmacol; 2003 May; 41(5):795-803. PubMed ID: 12717112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of induction and termination of ventricular fibrillation--significance of dispersion of ventricular repolarization].
    Behrens S; Zabel M; Franz MR; Schultheiss HP
    Z Kardiol; 2000 Dec; 89(12):1098-107. PubMed ID: 11201025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypertonic saline does not reverse the sodium channel blocking actions of lidocaine: evidence from electrophysiologic and defibrillation studies.
    Ujhelyi MR; Schur M; Frede T; Bottorff MB; Gabel M; Markel ML
    J Cardiovasc Pharmacol; 1997 Jan; 29(1):61-8. PubMed ID: 9007672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinacidil's Effects on Defibrillation Outcomes: Role of Increased Potassium Conductance Via the K(ATP) Channel.
    Winecoff AP; Sims JJ; Markel ML; Ujhelyi MR
    J Cardiovasc Pharmacol Ther; 1997 Jul; 2(3):171-180. PubMed ID: 10684456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal cardiac defibrillation threshold: effects of acute ischemia.
    Jones DL; Sohla A; Klein GJ
    Pacing Clin Electrophysiol; 1986 May; 9(3):322-31. PubMed ID: 2423974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does the combination of hyperkalemia and KATP activation determine excitation rate gradient and electrical failure in the globally ischemic fibrillating heart?
    Taylor TG; Venable PW; Booth A; Garg V; Shibayama J; Zaitsev AV
    Am J Physiol Heart Circ Physiol; 2013 Sep; 305(6):H903-12. PubMed ID: 23873793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts.
    Pandit SV; Warren M; Mironov S; Tolkacheva EG; Kalifa J; Berenfeld O; Jalife J
    Biophys J; 2010 May; 98(10):2091-101. PubMed ID: 20483316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lidocaine does not affect myocardial electrical heterogeneity: implications for low proarrhythmic actions.
    Sims JJ; Winecoff AP; Ujhelyi MR
    Pharmacotherapy; 1997; 17(6):1267-73. PubMed ID: 9399610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of defibrillation shock energy and timing on 3-D computer model of heart.
    Province RA; Fishler MG; Thakor NV
    Ann Biomed Eng; 1993; 21(1):19-31. PubMed ID: 8434817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmural recording of shock potential gradient fields, early postshock activations, and refibrillation episodes associated with external defibrillation of long-duration ventricular fibrillation in swine.
    Allred JD; Killingsworth CR; Allison JS; Dosdall DJ; Melnick SB; Smith WM; Ideker RE; Walcott GP
    Heart Rhythm; 2008 Nov; 5(11):1599-606. PubMed ID: 18984539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barium decreases defibrillation energy requirements.
    Dorian P; Witkowski FX; Penkoske PA; Feder-Elituv RS
    J Cardiovasc Pharmacol; 1994 Jan; 23(1):107-12. PubMed ID: 7511721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tedisamil increases coherence during ventricular fibrillation and decreases defibrillation energy requirements.
    Dorian P; Newman D
    Cardiovasc Res; 1997 Feb; 33(2):485-94. PubMed ID: 9074714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock-induced depolarization of refractory myocardium prevents wave-front propagation in defibrillation.
    Kwaku KF; Dillon SM
    Circ Res; 1996 Nov; 79(5):957-73. PubMed ID: 8888688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiologic deterioration after one-minute fibrillation increases relative biphasic defibrillation efficacy.
    Tovar OH; Jones JL
    J Cardiovasc Electrophysiol; 2000 Jun; 11(6):645-51. PubMed ID: 10868738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.