These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 10869018)
1. Predicting the oxidation state of cysteines by multiple sequence alignment. Fiser A; Simon I Bioinformatics; 2000 Mar; 16(3):251-6. PubMed ID: 10869018 [TBL] [Abstract][Full Text] [Related]
2. Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Go YM; Jones DP Circulation; 2005 Jun; 111(22):2973-80. PubMed ID: 15927968 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of the glutathione/glutathione disulfide redox state is induced by cysteine deficiency in human colon carcinoma HT29 cells. Miller LT; Watson WH; Kirlin WG; Ziegler TR; Jones DP J Nutr; 2002 Aug; 132(8):2303-6. PubMed ID: 12163679 [TBL] [Abstract][Full Text] [Related]
4. Amino acid function relates to its embedded protein microenvironment: A study on disulfide-bridged cystine. Bhatnagar A; Apostol MI; Bandyopadhyay D Proteins; 2016 Nov; 84(11):1576-1589. PubMed ID: 27410223 [TBL] [Abstract][Full Text] [Related]
6. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Song J; Yuan Z; Tan H; Huber T; Burrage K Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444 [TBL] [Abstract][Full Text] [Related]
7. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843 [TBL] [Abstract][Full Text] [Related]
8. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features. Sun MA; Zhang Q; Wang Y; Ge W; Guo D BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667 [TBL] [Abstract][Full Text] [Related]
9. PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Pei J; Grishin NV Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437 [TBL] [Abstract][Full Text] [Related]
10. Predicting disulfide bond connectivity in proteins by correlated mutations analysis. Rubinstein R; Fiser A Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772 [TBL] [Abstract][Full Text] [Related]
11. Predicting the state of cysteines based on sequence information. Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168 [TBL] [Abstract][Full Text] [Related]
12. PROMALS web server for accurate multiple protein sequence alignments. Pei J; Kim BH; Tang M; Grishin NV Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W649-52. PubMed ID: 17452345 [TBL] [Abstract][Full Text] [Related]
13. Cy-preds: An algorithm and a web service for the analysis and prediction of cysteine reactivity. Soylu İ; Marino SM Proteins; 2016 Feb; 84(2):278-91. PubMed ID: 26685111 [TBL] [Abstract][Full Text] [Related]
14. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification. Ferrè F; Clote P Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W182-5. PubMed ID: 16844987 [TBL] [Abstract][Full Text] [Related]
15. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Chae HZ; Uhm TB; Rhee SG Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7022-6. PubMed ID: 8041739 [TBL] [Abstract][Full Text] [Related]
16. ConCysFind: a pipeline tool to predict conserved amino acids of protein sequences across the plant kingdom. Moore M; Wesemann C; Gossmann N; Sahm A; Krüger J; Sczyrba A; Dietz KJ BMC Bioinformatics; 2020 Oct; 21(1):490. PubMed ID: 33129266 [TBL] [Abstract][Full Text] [Related]
17. Pinpointing cysteine oxidation sites by high-resolution proteomics reveals a mechanism of redox-dependent inhibition of human STING. Zamorano Cuervo N; Fortin A; Caron E; Chartier S; Grandvaux N Sci Signal; 2021 Apr; 14(680):. PubMed ID: 33906974 [TBL] [Abstract][Full Text] [Related]
18. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569 [TBL] [Abstract][Full Text] [Related]
19. Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions. Aran M; Ferrero DS; Pagano E; Wolosiuk RA FEBS J; 2009 May; 276(9):2478-93. PubMed ID: 19476489 [TBL] [Abstract][Full Text] [Related]
20. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines. Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]