BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10869502)

  • 1. Riluzole improves measures of oxidative stress following traumatic spinal cord injury.
    Mu X; Azbill RD; Springer JE
    Brain Res; 2000 Jul; 870(1-2):66-72. PubMed ID: 10869502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NBQX treatment improves mitochondrial function and reduces oxidative events after spinal cord injury.
    Mu X; Azbill RD; Springer JE
    J Neurotrauma; 2002 Aug; 19(8):917-27. PubMed ID: 12225652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury.
    Mu X; Azbill RD; Springer JE
    J Neurotrauma; 2000 Sep; 17(9):773-80. PubMed ID: 11011817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes.
    Azbill RD; Mu X; Springer JE
    Brain Res; 2000 Jul; 871(2):175-80. PubMed ID: 10899284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction.
    Shimizu EN; Seifert JL; Johnson KJ; Romero-Ortega MI
    J Neurotrauma; 2018 Jun; 35(12):1319-1328. PubMed ID: 29295647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis.
    Dunlop J; Beal McIlvain H; She Y; Howland DS
    J Neurosci; 2003 Mar; 23(5):1688-96. PubMed ID: 12629173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.
    Springer JE; Azbill RD; Mark RJ; Begley JG; Waeg G; Mattson MP
    J Neurochem; 1997 Jun; 68(6):2469-76. PubMed ID: 9166741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Direct Comparison of Three Clinically Relevant Treatments in a Rat Model of Cervical Spinal Cord Injury.
    Hosier H; Peterson D; Tsymbalyuk O; Keledjian K; Smith BR; Ivanova S; Gerzanich V; Popovich PG; Simard JM
    J Neurotrauma; 2015 Nov; 32(21):1633-44. PubMed ID: 26192071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord.
    Dulin JN; Moore ML; Grill RJ
    J Neurotrauma; 2013 Feb; 30(3):211-26. PubMed ID: 22947335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy.
    Wilson JR; Fehlings MG
    World Neurosurg; 2014; 81(5-6):825-9. PubMed ID: 23295632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia.
    Daverey A; Agrawal SK
    Neurosci Lett; 2020 Nov; 738():135351. PubMed ID: 32891672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
    Satkunendrarajah K; Nassiri F; Karadimas SK; Lip A; Yao G; Fehlings MG
    Exp Neurol; 2016 Feb; 276():59-71. PubMed ID: 26394202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the effects of riluzole on adult spinal cord-derived neural stem/progenitor cells in vitro and in vivo.
    Hachem LD; Mothe AJ; Tator CH
    Int J Dev Neurosci; 2015 Dec; 47(Pt B):140-6. PubMed ID: 26390954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Polyphenol-Based Nanoparticles Boosted the Neuroprotective Effect of Riluzole for Acute Spinal Cord Injury.
    Yuan T; Wang T; Zhang J; Ye F; Gu Z; Li Y; Xu J
    Biomacromolecules; 2024 Apr; 25(4):2607-2620. PubMed ID: 38530873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early metabolic reactivation versus antioxidant therapy after a traumatic spinal cord injury in adult rats.
    Torres S; Salgado-Ceballos H; Torres JL; Orozco-Suarez S; Díaz-Ruíz A; Martínez A; Rivera-Cruz M; Ríos C; Lara A; Collado C; Guizar-Sahagún G
    Neuropathology; 2010 Feb; 30(1):36-43. PubMed ID: 19563509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord.
    Bao F; John SM; Chen Y; Mathison RD; Weaver LC
    Neuroscience; 2006 Jul; 140(3):1011-22. PubMed ID: 16581192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury.
    Cayli SR; Kocak A; Yilmaz U; Tekiner A; Erbil M; Ozturk C; Batcioglu K; Yologlu S
    Eur Spine J; 2004 Dec; 13(8):724-32. PubMed ID: 15232723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tirilazad widens the therapeutic window for riluzole-induced attenuation of progressive cortical degeneration in an infant rat model of the shaken baby syndrome.
    Smith SL; Hall ED
    J Neurotrauma; 1998 Sep; 15(9):707-19. PubMed ID: 9753218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature.
    Srinivas S; Wali AR; Pham MH
    Neurosurg Focus; 2019 Mar; 46(3):E6. PubMed ID: 30835675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.