These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 10870139)
1. The effect of kyphosis on the mechanical strength of a long-segment posterior construct using a synthetic model. Orchowski J; Polly DW; Klemme WR; Oda I; Cunningham B Spine (Phila Pa 1976); 2000 Jul; 25(13):1644-8. PubMed ID: 10870139 [TBL] [Abstract][Full Text] [Related]
2. The effects of hook pattern and kyphotic angulation on mechanical strength and apical rod strain in a long-segment posterior construct using a synthetic model. Belmont PJ; Polly DW; Cunningham BW; Klemme WR Spine (Phila Pa 1976); 2001 Mar; 26(6):627-35. PubMed ID: 11305279 [TBL] [Abstract][Full Text] [Related]
3. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis. Sun E; Alkalay R; Vader D; Snyder BD J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747 [TBL] [Abstract][Full Text] [Related]
4. Biomechanics of long segment fixation: hook patterns and rod strain. Choma TJ; Chwirut D; Polly DW J Spinal Disord; 2001 Apr; 14(2):125-32. PubMed ID: 11285424 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical risk factors for proximal junctional kyphosis: a detailed numerical analysis of surgical instrumentation variables. Cammarata M; Aubin CÉ; Wang X; Mac-Thiong JM Spine (Phila Pa 1976); 2014 Apr; 39(8):E500-7. PubMed ID: 24480964 [TBL] [Abstract][Full Text] [Related]
6. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation. van Laar W; Meester RJ; Smit TH; van Royen BJ Eur Spine J; 2007 Aug; 16(8):1209-14. PubMed ID: 17203270 [TBL] [Abstract][Full Text] [Related]
7. The effect of posterior polyester tethers on the biomechanics of proximal junctional kyphosis: a finite element analysis. Bess S; Harris JE; Turner AW; LaFage V; Smith JS; Shaffrey CI; Schwab FJ; Haid RW J Neurosurg Spine; 2017 Jan; 26(1):125-133. PubMed ID: 27611508 [TBL] [Abstract][Full Text] [Related]
8. Mechanical testing of a single rod versus a double rod in a long-segment animal model. Wattenbarger JM; Herring JA; Bronson D; Ashman RB J Spinal Disord; 2001 Jun; 14(3):232-6. PubMed ID: 11389374 [TBL] [Abstract][Full Text] [Related]
9. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation. Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771 [TBL] [Abstract][Full Text] [Related]
10. Long-term radiographic outcomes of a central hook-rod construct for osteotomy closure: minimum 5-year follow-up. Hyun SJ; Lenke LG; Kim YC; Koester LA; Blanke KM Spine (Phila Pa 1976); 2015 Apr; 40(7):E428-32. PubMed ID: 25599289 [TBL] [Abstract][Full Text] [Related]
11. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
12. Augmentation of an anterior solid rod construct with threaded cortical bone dowels. A biomechanical study. Spiegel DA; Drummond DS; Cunningham BW; Kanayama M; Haggerty CJ; McAfee PC; Dormans JP Spine (Phila Pa 1976); 1999 Nov; 24(22):2300-6; discussion 2307. PubMed ID: 10586452 [TBL] [Abstract][Full Text] [Related]
13. Short-segment pedicle instrumentation. Biomechanical analysis of supplemental hook fixation. Chiba M; McLain RF; Yerby SA; Moseley TA; Smith TS; Benson DR Spine (Phila Pa 1976); 1996 Feb; 21(3):288-94. PubMed ID: 8742203 [TBL] [Abstract][Full Text] [Related]
14. Anterior thoracic scoliosis constructs: effect of rod diameter and intervertebral cages on multi-segmental construct stability. Polly DW; Cunningham BW; Kuklo TR; Lenke LG; Oda I; Schroeder TM; Klemme WR Spine J; 2003; 3(3):213-9. PubMed ID: 14589202 [TBL] [Abstract][Full Text] [Related]
15. The inverse effects of load transfer and load sharing on axial compressive stiffness. Haher TR; Yeung AW; Ottaviano DM; Merola AA; Caruso SA Spine J; 2001; 1(5):324-9; discussion 330. PubMed ID: 14588309 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Fricka KB; Mahar AT; Newton PO Spine (Phila Pa 1976); 2002 Apr; 27(7):702-6. PubMed ID: 11923662 [TBL] [Abstract][Full Text] [Related]
17. The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness. Anderson AL; McIff TE; Asher MA; Burton DC; Glattes RC Spine (Phila Pa 1976); 2009 Mar; 34(5):441-6. PubMed ID: 19247164 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. An HS; Singh K; Vaccaro AR; Wang G; Yoshida H; Eck J; McGrady L; Lim TH Spine (Phila Pa 1976); 2004 Feb; 29(3):257-62. PubMed ID: 14752346 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Tencer AF; Hampton D; Eddy S Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391 [TBL] [Abstract][Full Text] [Related]
20. Coupling between sagittal and frontal plane deformity correction in idiopathic thoracic scoliosis and its relationship with postoperative sagittal alignment. Luk KD; Vidyadhara S; Lu DS; Wong YW; Cheung WY; Cheung KM Spine (Phila Pa 1976); 2010 May; 35(11):1158-64. PubMed ID: 20118836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]