BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10870181)

  • 1. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls.
    Hasegawa T; Yamada K; Kosemura S; Yamamura S; Hasegawa K
    Phytochemistry; 2000 Jun; 54(3):275-9. PubMed ID: 10870181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of myrosinase gene expression and myrosinase activity in radish hypocotyls by phototropic stimulation.
    Yamada K; Hasegawa T; Minami E; Shibuya N; Kosemura S; Yamamura S; Hasegawa K
    J Plant Physiol; 2003 Mar; 160(3):255-9. PubMed ID: 12749082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototropism in Hypocotyls of Radish: IV. Flank Growth and Lateral Distribution of cis- and trans-Raphanusanins in the First Positive Phototropic Curvature.
    Hasegawa K; Noguchi H; Tanoue C; Sando S; Takada M; Sakoda M; Hashimoto T
    Plant Physiol; 1987 Oct; 85(2):379-82. PubMed ID: 16665706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phototropism in Hypocotyls of Radish : II. Role of cis- and trans-Raphanusanins, and Raphanusamide in Phototropism of Radish Hypocotyls.
    Noguchi H; Nishitani K; Bruinsma J; Hasegawa K
    Plant Physiol; 1986 Aug; 81(4):980-3. PubMed ID: 16664969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide.
    Noguchi H; Hasegawa K
    Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A major factor in gravitropism in radish hypocotyls is the suppression of growth on the upper side of hypocotyls.
    Tokiwa H; Hasegawa T; Yamada K; Shigemori H; Hasegawa K
    J Plant Physiol; 2006 Dec; 163(12):1267-72. PubMed ID: 17126730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review.
    Bruinsma J; Hasegawa K
    Environ Exp Bot; 1989 Jan; 29(1):25-36. PubMed ID: 11541033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototropism in Hypocotyls of Radish : I. Isolation and Identification of Growth Inhibitors, cis- and trans-Raphanusanins and Raphanusamide, Involved in Phototropism of Radish Hypocotyls.
    Hasegawa K; Noguchi H; Iwagawa T; Hase T
    Plant Physiol; 1986 Aug; 81(4):976-9. PubMed ID: 16664968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry and biology of phototropism-regulating substances in higher plants.
    Yamamura S; Hasegawa K
    Chem Rec; 2001; 1(5):362-72. PubMed ID: 11933243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First total synthesis of 4-methylthio-3-butenyl glucosinolate.
    Yamazoe S; Hasegawa K; Shigemori H
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):785-7. PubMed ID: 19270363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high concentration of abscisic acid inhibits hypocotyl phototropism in Gossypium arboreum by reducing accumulation and asymmetric distribution of auxin.
    Zhu JD; Wang J; Guo XN; Shang BS; Yan HR; Zhang X; Zhao X
    J Exp Bot; 2021 Sep; 72(18):6365-6381. PubMed ID: 34145440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana.
    Khurana JP; Best TR; Poff KL
    Plant Physiol; 1989; 90(2):376-9. PubMed ID: 11537453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of beta-glucosidase activity in maize coleoptiles by blue light illumination.
    Jabeen R; Yamada K; Shigemori H; Hasegawa T; Hara M; Kuboi T; Hasegawa K
    J Plant Physiol; 2006 Mar; 163(5):538-45. PubMed ID: 16473658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AtANN1 and AtANN2 are involved in phototropism of etiolated hypocotyls of
    Wang X; Han L; Yin H; Zhao Z; Cao H; Shang Z; Kang E
    AoB Plants; 2022 Feb; 14(1):plab075. PubMed ID: 35079328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings.
    Lv QY; Zhao QP; Zhu C; Ding M; Chu FY; Li XK; Cheng K; Zhao X
    Stress Biol; 2023 Jul; 3(1):27. PubMed ID: 37676397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raphanusanin-induced genes and the characterization of RsCSN3, a raphanusanin-induced gene in etiolated radish hypocotyls.
    Moehninsi ; Yamada K; Hasegawa T; Shigemori H
    Phytochemistry; 2008 Nov; 69(16):2781-92. PubMed ID: 18952246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence.
    Jin X; Zhu J; Zeiger E
    J Exp Bot; 2001 Jan; 52(354):91-7. PubMed ID: 11181717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severely reduced gravitropism in dark-grown hypocotyls of a starch-deficient mutant of Nicotiana sylvestris.
    Kiss JZ; Sack FD
    Plant Physiol; 1990; 94(4):1867-73. PubMed ID: 11537476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological asymmetry in etiolated pea epicotyls: relation to patterns of auxin distribution and phototropic behavior.
    Kuhn H; Galston AW
    Photochem Photobiol; 1992; 55(2):313-8. PubMed ID: 11537993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic separation of phototropism from blue-light inhibition of stem elongation.
    Cosgrove DJ
    Photochem Photobiol; 1985; 42(6):745-51. PubMed ID: 11538840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.