These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10870181)

  • 21. Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.
    Lariguet P; Fankhauser C
    Plant J; 2004 Dec; 40(5):826-34. PubMed ID: 15546364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana.
    Orbovic V; Poff KL
    Plant Physiol; 1991; 97(4):1470-5. PubMed ID: 11538373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure of oat seedlings to blue light results in amplified phosphorylation of the putative photoreceptor for phototropism and in higher sensitivity of the plants to phototropic stimulation.
    Salomon M; Zacherl M; Luff L; Rudiger W
    Plant Physiol; 1997 Oct; 115(2):493-500. PubMed ID: 11536818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Tsuchida-Mayama T; Sakai T; Hanada A; Uehara Y; Asami T; Yamaguchi S
    Plant J; 2010 May; 62(4):653-62. PubMed ID: 20202166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative Analysis of Tip Growth, Phototropic Responses, and Other Blue Light-Dependent Photoresponses of Vaucheria.
    Kataoka H
    Methods Mol Biol; 2019; 1924():83-120. PubMed ID: 30694469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological Analysis of Phototropic Responses in Arabidopsis.
    Zeidler M
    Methods Mol Biol; 2016; 1398():21-8. PubMed ID: 26867612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.
    Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E
    Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.
    Zhang KX; Xu HH; Yuan TT; Zhang L; Lu YT
    Plant J; 2013 Oct; 76(2):308-21. PubMed ID: 23888933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses.
    Haga K; Tsuchida-Mayama T; Yamada M; Sakai T
    Plant Cell; 2015 Apr; 27(4):1098-112. PubMed ID: 25873385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in ion fluxes during phototropic bending of etiolated oat coleoptiles.
    Babourina O; Godfrey L; Voltchanskii K
    Ann Bot; 2004 Jul; 94(1):187-94. PubMed ID: 15155378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PINOID functions in root phototropism as a negative regulator.
    Haga K; Sakai T
    Plant Signal Behav; 2015; 10(5):e998545. PubMed ID: 26039488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defining the site of light perception and initiation of phototropism in Arabidopsis.
    Preuten T; Hohm T; Bergmann S; Fankhauser C
    Curr Biol; 2013 Oct; 23(19):1934-8. PubMed ID: 24076239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.
    Kagawa T; Kimura M; Wada M
    Plant Cell Physiol; 2009 Oct; 50(10):1774-85. PubMed ID: 19689999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time threshold for second positive phototropism is decreased by a preirradiation with red light.
    Janoudi A-K ; Konjevic R; Apel P; Poff KL
    Plant Physiol; 1992 Aug; 99(4):1422-5. PubMed ID: 11537887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological Characterization of Phototropism in Arabidopsis Seedlings.
    Haga K; Kimura T
    Methods Mol Biol; 2019; 1924():3-17. PubMed ID: 30694462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and identification of a new growth inhibitor, raphanusanin, from radish seedlings and its role in light inhibition of hypocotyl growth.
    Hasegawa K; Shiihara S; Iwagawa T; Hase T
    Plant Physiol; 1982 Aug; 70(2):626-8. PubMed ID: 16662545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls.
    Alvarez S; He Y; Chen S
    Plant Cell Physiol; 2008 Mar; 49(3):324-33. PubMed ID: 18202003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation.
    Matsuzaki J; Masumori M; Tange T
    Plant Cell Environ; 2007 May; 30(5):646-53. PubMed ID: 17407541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex.
    Sullivan S; Takemiya A; Kharshiing E; Cloix C; Shimazaki KI; Christie JM
    Plant J; 2016 Dec; 88(6):907-920. PubMed ID: 27545835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic separation of phototropism and blue light inhibition of stem elongation.
    Liscum E; Young JC; Poff KL; Hangarter RP
    Plant Physiol; 1992 Sep; 100(1):267-71. PubMed ID: 11538049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.