These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 10871322)
1. Nitric oxide from enteric nerves acts by a different mechanism from myogenic nitric oxide in canine lower esophageal sphincter. Daniel EE; Jury J; Salapatek AM; Bowes T; Lam A; Thomas S; Ramnarain M; Nguyen V; Mistry V J Pharmacol Exp Ther; 2000 Jul; 294(1):270-9. PubMed ID: 10871322 [TBL] [Abstract][Full Text] [Related]
2. Actions of putative chloride channel blocking agents on canine lower esophageal sphincter (LES). Jury J; Patel M; Bowes T; Daniel EE Can J Physiol Pharmacol; 2001 Dec; 79(12):1007-14. PubMed ID: 11824935 [TBL] [Abstract][Full Text] [Related]
3. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature. Woodman OL; Wongsawatkul O Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823 [TBL] [Abstract][Full Text] [Related]
4. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon. Lang RJ; Watson MJ Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392 [TBL] [Abstract][Full Text] [Related]
5. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery. Jiang F; Li CG; Rand MJ Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860 [TBL] [Abstract][Full Text] [Related]
6. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels. Zhu P; Bény JL; Flammer J; Lüscher TF; Haefliger IO Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1761-7. PubMed ID: 9286264 [TBL] [Abstract][Full Text] [Related]
7. Evidence that NO acts as a redundant NANC inhibitory neurotransmitter in the guinea-pig isolated taenia coli. Selemidis S; Satchell DG; Cocks TM Br J Pharmacol; 1997 Jun; 121(3):604-11. PubMed ID: 9179406 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanism of KCl-induced relaxation of the esophagus. Yaktubay Döndaş N; Karataş Y; Kaya D; Soylu N; Singirik E; Baysal F Eur J Pharmacol; 2009 Mar; 605(1-3):123-8. PubMed ID: 19171133 [TBL] [Abstract][Full Text] [Related]
9. Opposing roles of K(+) and Cl(-) channels in maintenance of opossum lower esophageal sphincter tone. Zhang Y; Miller DV; Paterson WG Am J Physiol Gastrointest Liver Physiol; 2000 Dec; 279(6):G1226-34. PubMed ID: 11093945 [TBL] [Abstract][Full Text] [Related]
10. Diversity of K+ channels in circular smooth muscle of opossum lower esophageal sphincter. Zhang Y; Paterson WG Can J Physiol Pharmacol; 2001 Jul; 79(7):608-20. PubMed ID: 11478595 [TBL] [Abstract][Full Text] [Related]
11. Involvement of a glibenclamide-sensitive mechanism in the nitrergic neurotransmission of the pig intravesical ureter. Hernández M; Prieto D; Orensanz LM; Barahona MV; Jiménez-Cidre M; Rivera L; García-Sacristán A; Simonsen U Br J Pharmacol; 1997 Feb; 120(4):609-16. PubMed ID: 9051298 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a role for nitric oxide in relation of the frog oesophageal body to electrical field stimulation. Williams SJ; Parsons ME Br J Pharmacol; 1997 Sep; 122(1):179-85. PubMed ID: 9298545 [TBL] [Abstract][Full Text] [Related]
13. Characterization of ionic currents and electrophysiological properties of goldfish somatotropes in primary culture. Yu Y; Ali DW; Chang JP Gen Comp Endocrinol; 2010 Dec; 169(3):231-43. PubMed ID: 20850441 [TBL] [Abstract][Full Text] [Related]
14. Myogenic nitric oxide synthase activity in canine lower oesophageal sphincter: morphological and functional evidence. Salapatek AM; Wang YF; Mao YK; Lam A; Daniel EE Br J Pharmacol; 1998 Mar; 123(6):1055-64. PubMed ID: 9559886 [TBL] [Abstract][Full Text] [Related]
15. Transition of functional innervation in the developing porcine airway from nitrergic to catecholaminergic. Connellan DR; Mitchell HW Br J Pharmacol; 1998 Feb; 123(4):712-8. PubMed ID: 9517391 [TBL] [Abstract][Full Text] [Related]
16. Arachidonic acid relaxes human pulmonary arteries through K+ channels and nitric oxide pathways. Guerard P; Goirand F; Fichet N; Bernard A; Rochette L; Morcillo EJ; Dumas M; Bardou M Eur J Pharmacol; 2004 Oct; 501(1-3):127-35. PubMed ID: 15464071 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological evidence that tetraethylammonium-sensitive, iberiotoxin-insensitive K+ channels function as a negative feedback element for sympathetic neurotransmission by suppressing omega-conotoxin-GVIA-insensitive Ca2+ channels in the relaxation of rabbit facial vein. Tanaka Y; Akutsu A; Tanaka H; Horinouchi T; Tsuru H; Koike K; Shigenobu K Naunyn Schmiedebergs Arch Pharmacol; 2003 Jan; 367(1):35-42. PubMed ID: 12616339 [TBL] [Abstract][Full Text] [Related]
18. Effect of specific ion channel blockers on cultured Schwann cell proliferation. Pappas CA; Ritchie JM Glia; 1998 Feb; 22(2):113-20. PubMed ID: 9537831 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Mistry DK; Garland CJ Br J Pharmacol; 1998 Jul; 124(6):1131-40. PubMed ID: 9720783 [TBL] [Abstract][Full Text] [Related]