These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 10871411)

  • 1. Theoretical design of antisense genes with statistically increased efficacy.
    Lehmann MJ; Patzel V; Sczakiel G
    Nucleic Acids Res; 2000 Jul; 28(13):2597-604. PubMed ID: 10871411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro selection supports the view of a kinetic control of antisense RNA-mediated inhibition of gene expression in mammalian cells.
    Patzel V; Sczakiel G
    Nucleic Acids Res; 2000 Jul; 28(13):2462-6. PubMed ID: 10871394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes.
    Kronenwett R; Haas R; Sczakiel G
    J Mol Biol; 1996 Jun; 259(4):632-44. PubMed ID: 8683570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of RNA secondary structure on cellular antisense activity.
    Vickers TA; Wyatt JR; Freier SM
    Nucleic Acids Res; 2000 Mar; 28(6):1340-7. PubMed ID: 10684928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combination anti-HIV-1 gene therapy approach using a single transcription unit that expresses antisense, decoy, and sense RNAs, and trans-dominant negative mutant Gag and Env proteins.
    Ding SF; Lombardi R; Nazari R; Joshi S
    Front Biosci; 2002 Feb; 7():a15-28. PubMed ID: 11815282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV-1-encoded antisense RNA suppresses viral replication for a prolonged period.
    Kobayashi-Ishihara M; Yamagishi M; Hara T; Matsuda Y; Takahashi R; Miyake A; Nakano K; Yamochi T; Ishida T; Watanabe T
    Retrovirology; 2012 May; 9():38. PubMed ID: 22569184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of infectious human immunodeficiency virus type 1 virions via lentiviral vector encoded short antisense RNAs.
    Gu S; Ji J; Kim JD; Yee JK; Rossi JJ
    Oligonucleotides; 2006; 16(4):287-95. PubMed ID: 17155905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1.
    Rittner K; Burmester C; Sczakiel G
    Nucleic Acids Res; 1993 Mar; 21(6):1381-7. PubMed ID: 8464728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of antisense RNA target regions of the human immunodeficiency virus type 1.
    Rittner K; Sczakiel G
    Nucleic Acids Res; 1991 Apr; 19(7):1421-6. PubMed ID: 2027749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length dependence of RNA-RNA annealing.
    Patzel V; Sczakiel G
    J Mol Biol; 1999 Dec; 294(5):1127-34. PubMed ID: 10600371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses of intracellularly expressed antisense RNAs as inhibitors of human immunodeficiency virus type 1 replication.
    Veres G; Junker U; Baker J; Barske C; Kalfoglou C; Ilves H; Escaich S; Kaneshima H; Böhnlein E
    J Virol; 1998 Mar; 72(3):1894-901. PubMed ID: 9499041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antisense sequence of the HIV-1 TAR stem-loop structure covalently linked to the hairpin ribozyme enhances its catalytic activity against two artificial substrates.
    Pérez-Ruiz M; Sievers D; García-López PA; Berzal-Herranz A
    Antisense Nucleic Acid Drug Dev; 1999 Feb; 9(1):33-42. PubMed ID: 10192287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of an anti-HIV-1 combination gene therapy strategy using the antisense RNA and multimeric hammerhead ribozymes.
    Ramezani A; Ma XZ; Ameli M; Arora A; Joshi S
    Front Biosci; 2006 Sep; 11():2940-8. PubMed ID: 16720366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design of antisense RNA.
    Sczakiel G
    Antisense Nucleic Acid Drug Dev; 1997 Aug; 7(4):439-44. PubMed ID: 9303196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein.
    Zeffman A; Hassard S; Varani G; Lever A
    J Mol Biol; 2000 Apr; 297(4):877-93. PubMed ID: 10736224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection.
    Biasolo MA; Radaelli A; Del Pup L; Franchin E; De Giuli-Morghen C; Palu G
    J Virol; 1996 Apr; 70(4):2154-61. PubMed ID: 8642637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription.
    Beerens N; Groot F; Berkhout B
    Nucleic Acids Res; 2000 Nov; 28(21):4130-7. PubMed ID: 11058109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of human immunodeficiency virus type 1 RNA dimerization on viral infectivity and of stem-loop B on RNA dimerization and reverse transcription and dissociation of dimerization from packaging.
    Shen N; Jetté L; Liang C; Wainberg MA; Laughrea M
    J Virol; 2000 Jun; 74(12):5729-35. PubMed ID: 10823883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of RNA structure on the annealing of a potent antisense RNA directed against the human immunodeficiency virus type 1.
    Eckardt S; Romby P; Sczakiel G
    Biochemistry; 1997 Oct; 36(42):12711-21. PubMed ID: 9335527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular expression of RNA transcripts complementary to the human immunodeficiency virus type 1 gag gene inhibits viral replication in human CD4+ lymphocytes.
    Veres G; Escaich S; Baker J; Barske C; Kalfoglou C; Ilves H; Kaneshima H; Böhnlein E
    J Virol; 1996 Dec; 70(12):8792-800. PubMed ID: 8971008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.