These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10871617)

  • 1. 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Evidence for high levels of condensed inorganic phosphates.
    Moreno B; Urbina JA; Oldfield E; Bailey BN; Rodrigues CO; Docampo R
    J Biol Chem; 2000 Sep; 275(37):28356-62. PubMed ID: 10871617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magic-angle spinning (31)P NMR spectroscopy of condensed phosphates in parasitic protozoa: visualizing the invisible.
    Moreno B; Rodrigues CO; Bailey BN; Urbina JA; Moreno SN; Docampo R; Oldfield E
    FEBS Lett; 2002 Jul; 523(1-3):207-12. PubMed ID: 12123833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole.
    Chen CK; Leung SS; Guilbert C; Jacobson MP; McKerrow JH; Podust LM
    PLoS Negl Trop Dis; 2010 Apr; 4(4):e651. PubMed ID: 20386598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major.
    Turnock DC; Ferguson MA
    Eukaryot Cell; 2007 Aug; 6(8):1450-63. PubMed ID: 17557881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular comparison of the mitochondrial and cytoplasmic hsp70 of Trypanosoma cruzi, Trypanosoma brucei and Leishmania major.
    Klein KG; Olson CL; Donelson JE; Engman DM
    J Eukaryot Microbiol; 1995; 42(5):473-6. PubMed ID: 7581323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs.
    Urbina JA; Moreno B; Vierkotter S; Oldfield E; Payares G; Sanoja C; Bailey BN; Yan W; Scott DA; Moreno SN; Docampo R
    J Biol Chem; 1999 Nov; 274(47):33609-15. PubMed ID: 10559249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glycosomal RING finger proteins of trypanosomatids.
    Saveria T; Kessler P; Jensen BC; Parsons M
    Exp Parasitol; 2007 May; 116(1):14-24. PubMed ID: 17188680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of stage-specific aminotransferases from trypanosomatids.
    Marciano D; Maugeri DA; Cazzulo JJ; Nowicki C
    Mol Biochem Parasitol; 2009 Aug; 166(2):172-82. PubMed ID: 19443056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acidocalcisome vacuolar transporter chaperone 4 catalyzes the synthesis of polyphosphate in insect-stages of Trypanosoma brucei and T. cruzi.
    Ulrich PN; Lander N; Kurup SP; Reiss L; Brewer J; Soares Medeiros LC; Miranda K; Docampo R
    J Eukaryot Microbiol; 2014; 61(2):155-65. PubMed ID: 24386955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates.
    Ullman B; Carter D
    Int J Parasitol; 1997 Feb; 27(2):203-13. PubMed ID: 9088991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of prostaglandin F synthase from the protozoa Leishmania major and Trypanosoma cruzi with NADP.
    Moen SO; Fairman JW; Barnes SR; Sullivan A; Nakazawa-Hewitt S; Van Voorhis WC; Staker BL; Lorimer DD; Myler PJ; Edwards TE
    Acta Crystallogr F Struct Biol Commun; 2015 May; 71(Pt 5):609-14. PubMed ID: 25945716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical shift assignments and secondary structure prediction for Q4DY78, a conserved kinetoplastid-specific protein from Trypanosoma cruzi.
    D'Andréa ÉD; Diehl A; Schmieder P; Oschkinat H; Pires JR
    Biomol NMR Assign; 2016 Oct; 10(2):325-8. PubMed ID: 27356988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
    de Castro Neto AL; da Silveira JF; Mortara RA
    Front Cell Infect Microbiol; 2021; 11():669079. PubMed ID: 33937106
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiological and morphological evidences for the presence acidocalcisomes in Trypanosoma evansi: single cell fluorescence and 31P NMR studies.
    Mendoza M; Mijares A; Rojas H; Rodríguez JP; Urbina JA; DiPolo R
    Mol Biochem Parasitol; 2002; 125(1-2):23-33. PubMed ID: 12467971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies on the biochemical properties of the malic enzymes from Trypanosoma cruzi and Trypanosoma brucei.
    Leroux AE; Maugeri DA; Opperdoes FR; Cazzulo JJ; Nowicki C
    FEMS Microbiol Lett; 2011 Jan; 314(1):25-33. PubMed ID: 21105905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements.
    Bringaud F; Ghedin E; Blandin G; Bartholomeu DC; Caler E; Levin MJ; Baltz T; El-Sayed NM
    Mol Biochem Parasitol; 2006 Feb; 145(2):158-70. PubMed ID: 16257065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.