BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 10871641)

  • 1. Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 2000 Jul; 116(1):75-99. PubMed ID: 10871641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1999 Jul; 114(1):93-124. PubMed ID: 10398695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca(2+)-activated K+ channels.
    DiChiara TJ; Reinhart PH
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):403-18. PubMed ID: 8847636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
    Horrigan FT; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):305-36. PubMed ID: 10436004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1998 Jun; 111(6):751-80. PubMed ID: 9607935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels.
    Cui J; Cox DH; Aldrich RW
    J Gen Physiol; 1997 May; 109(5):647-73. PubMed ID: 9154910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-conductance calcium-activated potassium channels of cultured rat melanotrophs.
    Kehl SJ; Wong K
    J Membr Biol; 1996 Apr; 150(3):219-30. PubMed ID: 8661991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z; Lou XJ; Horrigan FT
    J Gen Physiol; 2006 Mar; 127(3):309-28. PubMed ID: 16505150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
    Horrigan FT; Cui J; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):277-304. PubMed ID: 10436003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state and closed-state inactivation properties of inactivating BK channels.
    Ding JP; Lingle CJ
    Biophys J; 2002 May; 82(5):2448-65. PubMed ID: 11964233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine modification alters voltage- and Ca(2+)-dependent gating of large conductance (BK) potassium channels.
    Zhang G; Horrigan FT
    J Gen Physiol; 2005 Feb; 125(2):213-36. PubMed ID: 15684095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated transient currents in bovine adrenal fasciculata cells. I. T-type Ca2+ current.
    Mlinar B; Biagi BA; Enyeart JJ
    J Gen Physiol; 1993 Aug; 102(2):217-37. PubMed ID: 8228909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-independent activation of BKCa channels at negative potentials in mammalian inner hair cells.
    Thurm H; Fakler B; Oliver D
    J Physiol; 2005 Nov; 569(Pt 1):137-51. PubMed ID: 16150795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+.
    Shelley C; Niu X; Geng Y; Magleby KL
    J Gen Physiol; 2010 May; 135(5):461-80. PubMed ID: 20421372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent gating mechanisms for dSlo, a large-conductance Ca2+-activated K+ (BK) channel.
    Moss BL; Silberberg SD; Nimigean CM; Magleby KL
    Biophys J; 1999 Jun; 76(6):3099-117. PubMed ID: 10354435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity.
    Cox DH; Aldrich RW
    J Gen Physiol; 2000 Sep; 116(3):411-32. PubMed ID: 10962017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states.
    Nimigean CM; Magleby KL
    J Gen Physiol; 1999 Mar; 113(3):425-40. PubMed ID: 10051518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.
    Latorre R; Brauchi S
    Biol Res; 2006; 39(3):385-401. PubMed ID: 17106573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.