BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1087180)

  • 41. Comparison of thymidine and folinic acid protection from methotrexate toxicity in human lymphoid cell lines.
    Browman GP
    Cancer Treat Rep; 1982 Dec; 66(12):2051-9. PubMed ID: 6982753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-dose leucovorin reverses acute high-dose methotrexate neurotoxicity in the rat.
    Phillips PC; Thaler HT; Allen JC; Rottenberg DA
    Ann Neurol; 1989 Apr; 25(4):365-72. PubMed ID: 2785366
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adherent-cell-dependent stimulation of CFU-GM by nucleobases, nucleosides, their analogues, and the hemoregulatory peptide dimer.
    Langen P; Schunck H; Hunger B; Schütt M; Laerum OD
    Exp Hematol; 1992 Feb; 20(2):196-200. PubMed ID: 1544389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methotrexate (MTX) inhibits osteoblastic differentiation in vitro: possible mechanism of MTX osteopathy.
    Uehara R; Suzuki Y; Ichikawa Y
    J Rheumatol; 2001 Feb; 28(2):251-6. PubMed ID: 11246658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Mice transduced with double-mutant dihydrofolate reductase-cytidine deaminase fusion gene attained protection from high dose chemotherapy].
    Lu P; Lu Y; Pang K; Wang SB; Chen JQ; Xu HM; Wang JK; Zhao SC
    Zhonghua Wai Ke Za Zhi; 2005 Aug; 43(15):998-1001. PubMed ID: 16194358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid.
    Padmanabhan S; Tripathi DN; Vikram A; Ramarao P; Jena GB
    Mutat Res; 2009 Feb; 673(1):43-52. PubMed ID: 19110071
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methotrexate inhibits superoxide production and chemotaxis in neutrophils activated by granulocyte colony-stimulating factor.
    Okuda A; Kubota M; Sawada M; Koishi S; Kataoka A; Bessho R; Usami I; Lin YW; Adachi S; Furusho K
    J Cell Physiol; 1996 Jul; 168(1):183-7. PubMed ID: 8647914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disposition of endogenous homocysteine by mouse fibroblast C3H/10T1/2 Cl 8 and the chemically transformed C3H/10T1/2 MCA Cl 16 cells following methotrexate exposure.
    Ueland PM; Refsum H; Male R; Lillehaug JR
    J Natl Cancer Inst; 1986 Jul; 77(1):283-9. PubMed ID: 3459921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of recombinant human tumor necrosis factor on highly enriched hematopoietic progenitor cell populations from normal human bone marrow and peripheral blood and bone marrow from patients with chronic myeloid leukemia.
    Wisniewski D; Strife A; Atzpodien J; Clarkson BD
    Cancer Res; 1987 Sep; 47(18):4788-94. PubMed ID: 3040231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prevention of methotrexate cytotoxicity by asparaginase inhibition of methotrexate polyglutamate formation.
    Jolivet J; Cole DE; Holcenberg JS; Poplack DG
    Cancer Res; 1985 Jan; 45(1):217-20. PubMed ID: 2578094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth requirements of calf lens epithelium in culture.
    Taylor-Papadimitriou J; Shearer M; Watling D
    J Cell Physiol; 1978 Apr; 95(1):95-103. PubMed ID: 305922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of thymidylate synthetase activity in development of methotrexate cytotoxicity.
    Moran RG; Mulkins M; Heidelberger C
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5924-8. PubMed ID: 160558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of leucovorin reversal of methotrexate cytotoxicity in human MCF-7 breast cancer cells.
    Boarman DM; Baram J; Allegra CJ
    Biochem Pharmacol; 1990 Dec; 40(12):2651-60. PubMed ID: 2260989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential effects of the antifolates methotrexate, aminopterin and trimetrexate on murine haemopoietic progenitor cells.
    Stromhaug A; Slordal L; Warren DJ
    Br J Haematol; 1996 Mar; 92(3):514-20. PubMed ID: 8616011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation versus rescue of antimetabolite toxicity by salvage metabolites administered by continuous infusion.
    Grindey GB; Semon JH; Pavelic ZP
    Antibiot Chemother (1971); 1978; 23():295-304. PubMed ID: 306219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pattern of myeloid suppression and recovery after the addition of methotrexate to murine long-term bone marrow culture.
    Udupa KB; Lipschitz DA
    Leuk Res; 1989; 13(8):667-72. PubMed ID: 2796375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of culture conditions and exposure duration in determining sensitivity of human bone marrow progenitor cells to methotrexate.
    Umbach GE; Spitzer G; Ajani JA; Hug V; Thames H; Rudolph FB; Drewinko B
    J Cancer Res Clin Oncol; 1986; 111(3):273-6. PubMed ID: 3733857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemical control of high-dose methotrexate/Leucovorin rescue therapy.
    Wilmanns W; Sauer H; Schalhorn A
    Recent Results Cancer Res; 1980; 74():42-9. PubMed ID: 6969415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of human granulocyte function by methotrexate.
    Hyams JS; Donaldson MH; Metcalf JA; Root RK
    Cancer Res; 1978 Mar; 38(3):650-5. PubMed ID: 304760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative aspects of the selective killing of transformed cells by methotrexate in the presence of leucovorin.
    Chow M; Rubin H
    In Vitro Cell Dev Biol Anim; 1999; 35(7):394-402. PubMed ID: 10462203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.