These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 10871850)

  • 21. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex.
    Lukas C; Sørensen CS; Kramer E; Santoni-Rugiu E; Lindeneg C; Peters JM; Bartek J; Lukas J
    Nature; 1999 Oct; 401(6755):815-8. PubMed ID: 10548110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association with cullin partners protects ROC proteins from proteasome-dependent degradation.
    Ohta T; Michel JJ; Xiong Y
    Oncogene; 1999 Nov; 18(48):6758-66. PubMed ID: 10597284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.
    Fukuchi M; Imamura T; Chiba T; Ebisawa T; Kawabata M; Tanaka K; Miyazono K
    Mol Biol Cell; 2001 May; 12(5):1431-43. PubMed ID: 11359933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex.
    Skowyra D; Craig KL; Tyers M; Elledge SJ; Harper JW
    Cell; 1997 Oct; 91(2):209-19. PubMed ID: 9346238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1.
    Deffenbaugh AE; Scaglione KM; Zhang L; Moore JM; Buranda T; Sklar LA; Skowyra D
    Cell; 2003 Sep; 114(5):611-22. PubMed ID: 13678584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1.
    Kaiser P; Sia RA; Bardes EG; Lew DJ; Reed SI
    Genes Dev; 1998 Aug; 12(16):2587-97. PubMed ID: 9716410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases.
    Ohta T; Xiong Y
    Cancer Res; 2001 Feb; 61(4):1347-53. PubMed ID: 11245432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquitin-dependent proteolysis and cell cycle control in yeast.
    Chun KT; Mathias N; Goebl MG
    Prog Cell Cycle Res; 1996; 2():115-27. PubMed ID: 9552389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1.
    Nakayama KI; Hatakeyama S; Nakayama K
    Biochem Biophys Res Commun; 2001 Apr; 282(4):853-60. PubMed ID: 11352628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteolysis and the G1-S transition: the SCF connection.
    Krek W
    Curr Opin Genet Dev; 1998 Feb; 8(1):36-42. PubMed ID: 9529603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway.
    Willems AR; Lanker S; Patton EE; Craig KL; Nason TF; Mathias N; Kobayashi R; Wittenberg C; Tyers M
    Cell; 1996 Aug; 86(3):453-63. PubMed ID: 8756727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.
    Bailly E; Reed SI
    Mol Cell Biol; 1999 Oct; 19(10):6872-90. PubMed ID: 10490625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1.
    Kishi T; Seno T; Yamao F
    Mol Gen Genet; 1998 Jan; 257(2):143-8. PubMed ID: 9491072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The ubiquitin-ligating system: from the discovery to the present].
    Tanaka K
    Tanpakushitsu Kakusan Koso; 1999 May; 44(6):737-43. PubMed ID: 10341545
    [No Abstract]   [Full Text] [Related]  

  • 35. Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis.
    Pitluk ZW; McDonough M; Sangan P; Gonda DK
    Mol Cell Biol; 1995 Mar; 15(3):1210-9. PubMed ID: 7862115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A splice variant of Skp2 is retained in the cytoplasm and fails to direct cyclin D1 ubiquitination in the uterine cancer cell line SK-UT.
    Ganiatsas S; Dow R; Thompson A; Schulman B; Germain D
    Oncogene; 2001 Jun; 20(28):3641-50. PubMed ID: 11439327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How proteolysis drives the cell cycle.
    King RW; Deshaies RJ; Peters JM; Kirschner MW
    Science; 1996 Dec; 274(5293):1652-9. PubMed ID: 8939846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell cycle regulation by the ubiquitin pathway.
    Pagano M
    FASEB J; 1997 Nov; 11(13):1067-75. PubMed ID: 9367342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro ubiquitination of cyclin D1 by ROC1-CUL1 and ROC1-CUL3.
    Maeda I; Ohta T; Koizumi H; Fukuda M
    FEBS Lett; 2001 Apr; 494(3):181-5. PubMed ID: 11311237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury.
    Hwang GW; Furuchi T; Naganuma A
    FASEB J; 2002 May; 16(7):709-11. PubMed ID: 11978736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.