BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 10872229)

  • 1. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves.
    Leipner J; Stamp P; Fracheboud Y
    Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F; Havaux M
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears.
    Lu Q; Lu C
    Plant Physiol Biochem; 2004 May; 42(5):395-402. PubMed ID: 15191742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina.
    Jin ES; Polle JE; Melis A
    Biochim Biophys Acta; 2001 Nov; 1506(3):244-59. PubMed ID: 11779558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo.
    Müller-Moulé P; Conklin PL; Niyogi KK
    Plant Physiol; 2002 Mar; 128(3):970-7. PubMed ID: 11891252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?
    Bukhov NG; Heber U; Wiese C; Shuvalov VA
    Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field.
    Lu C; Lu Q; Zhang J; Kuang T
    J Exp Bot; 2001 Sep; 52(362):1805-10. PubMed ID: 11520868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle.
    Morosinotto T; Baronio R; Bassi R
    J Biol Chem; 2002 Oct; 277(40):36913-20. PubMed ID: 12114527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism.
    Havaux M; Niyogi KK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8762-7. PubMed ID: 10411949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.).
    Fracheboud Y; Ribaut JM; Vargas M; Messmer R; Stamp P
    J Exp Bot; 2002 Sep; 53(376):1967-77. PubMed ID: 12177137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle.
    Ivanov AG; Krol M; Maxwell D; Huner NP
    FEBS Lett; 1995 Aug; 371(1):61-4. PubMed ID: 7664885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching.
    Wilson KE; Król M; Huner NP
    Planta; 2003 Aug; 217(4):616-27. PubMed ID: 12905022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of photoinhibition and temperature on carotenoids in sorghum leaves.
    Sharma PK; Hall DO
    Indian J Biochem Biophys; 1996 Dec; 33(6):471-7. PubMed ID: 9219432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants.
    Hobe S; Niemeier H; Bender A; Paulsen H
    Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves.
    Yin Y; Li S; Liao W; Lu Q; Wen X; Lu C
    J Plant Physiol; 2010 Aug; 167(12):959-66. PubMed ID: 20417985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.
    Gilmore AM; Shinkarev VP; Hazlett TL; Govindjee G
    Biochemistry; 1998 Sep; 37(39):13582-93. PubMed ID: 9753445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operation of the xanthophyll cycle and degradation of D1 protein in the inducible CAM plant, Talinum triangulare, under water deficit.
    Pieters AJ; Tezara W; Herrera A
    Ann Bot; 2003 Sep; 92(3):393-9. PubMed ID: 12881404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants.
    Munné-Bosch S; Peñuelas J
    Planta; 2003 Sep; 217(5):758-66. PubMed ID: 12698367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.