These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 10872316)
1. Control-mechanisms acting at the transcriptional and post-transcriptional levels are involved in the synthesis of the arginine pathway carbamoylphosphate synthase of yeast. Messenguy F; Feller A; Crabeel M; Piérard A EMBO J; 1983; 2(8):1249-54. PubMed ID: 10872316 [TBL] [Abstract][Full Text] [Related]
2. Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae. Kinney DM; Lusty CJ Mol Cell Biol; 1989 Nov; 9(11):4882-8. PubMed ID: 2689869 [TBL] [Abstract][Full Text] [Related]
3. A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript. Delbecq P; Werner M; Feller A; Filipkowski RK; Messenguy F; Piérard A Mol Cell Biol; 1994 Apr; 14(4):2378-90. PubMed ID: 8139542 [TBL] [Abstract][Full Text] [Related]
4. Role of RNA surveillance proteins Upf1/CpaR, Upf2 and Upf3 in the translational regulation of yeast CPA1 gene. Messenguy F; Vierendeels F; Piérard A; Delbecq P Curr Genet; 2002 Jul; 41(4):224-31. PubMed ID: 12172963 [TBL] [Abstract][Full Text] [Related]
5. Dual regulation of the synthesis of the arginine pathway carbamoylphosphate synthase of Saccharomyces cerevisiae by specific and general controls of amino acid biosynthesis. Piérard A; Messenguy F; Feller A; Hilger F Mol Gen Genet; 1979 Jul; 174(2):163-71. PubMed ID: 226837 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of the leader peptide of the yeast gene CPA1 and heterologous regulation by other fungal peptides. Delbecq P; Calvo O; Filipkowski RK; Piérard A; Messenguy F Curr Genet; 2000 Oct; 38(3):105-12. PubMed ID: 11057443 [TBL] [Abstract][Full Text] [Related]
7. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Werner M; Feller A; Messenguy F; Piérard A Cell; 1987 Jun; 49(6):805-13. PubMed ID: 3555844 [TBL] [Abstract][Full Text] [Related]
8. Requirement for the carboxyl-terminal domain of Saccharomyces cerevisiae carbamoyl-phosphate synthetase. Lim AL; Powers-Lee SG J Biol Chem; 1996 May; 271(19):11400-9. PubMed ID: 8626695 [TBL] [Abstract][Full Text] [Related]
9. Arginine-specific repression in Saccharomyces cerevisiae: kinetic data on ARG1 and ARG3 mRNA transcription and stability support a transcriptional control mechanism. Crabeel M; Lavalle R; Glansdorff N Mol Cell Biol; 1990 Mar; 10(3):1226-33. PubMed ID: 2406564 [TBL] [Abstract][Full Text] [Related]
10. Carbamoyl phosphate synthetase subunit Cpa1 interacting with Dut1, controls development, arginine biosynthesis, and pathogenicity of Colletotrichum gloeosporioides. Tan Q; Zhao X; He H; Zhang J; Yi T Fungal Biol; 2021 Mar; 125(3):184-190. PubMed ID: 33622534 [TBL] [Abstract][Full Text] [Related]
11. Purification and properties of the arginine-specific carbamoyl-phosphate synthase from Saccharomyces cerevisiae. Price CW; Holwell JH; Abdelal AT J Gen Microbiol; 1978 May; 106(1):145-51. PubMed ID: 206652 [TBL] [Abstract][Full Text] [Related]
12. Structure-function relationships in the arginine pathway carbamoylphosphate synthase of Saccharomyces cerevisiae. Piérard A; Schröter B J Bacteriol; 1978 Apr; 134(1):167-76. PubMed ID: 206535 [TBL] [Abstract][Full Text] [Related]
13. Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. Nyunoya H; Lusty CJ J Biol Chem; 1984 Aug; 259(15):9790-8. PubMed ID: 6086650 [TBL] [Abstract][Full Text] [Related]
14. A Ham1p-dependent mechanism and modulation of the pyrimidine biosynthetic pathway can both confer resistance to 5-fluorouracil in yeast. Carlsson M; Gustavsson M; Hu GZ; Murén E; Ronne H PLoS One; 2013; 8(10):e52094. PubMed ID: 24124444 [TBL] [Abstract][Full Text] [Related]
15. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Gaba A; Jacobson A; Sachs MS Mol Cell; 2005 Nov; 20(3):449-60. PubMed ID: 16285926 [TBL] [Abstract][Full Text] [Related]
16. Participation of transcriptional and post-transcriptional regulatory mechanisms in the control of arginine metabolism in yeast. Messenguy F; Dubois E Mol Gen Genet; 1983; 189(1):148-56. PubMed ID: 6343780 [TBL] [Abstract][Full Text] [Related]
17. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. Gaba A; Wang Z; Krishnamoorthy T; Hinnebusch AG; Sachs MS EMBO J; 2001 Nov; 20(22):6453-63. PubMed ID: 11707416 [TBL] [Abstract][Full Text] [Related]
18. Further definition of the sequence and position requirements of the arginine control element that mediates repression and induction by arginine in Saccharomyces cerevisiae. Crabeel M; de Rijcke M; Seneca S; Heimberg H; Pfeiffer I; Matisova A Yeast; 1995 Nov; 11(14):1367-80. PubMed ID: 8585320 [TBL] [Abstract][Full Text] [Related]
19. In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for participation of the arginine repressor in cumulative repression. Lissens W; Cunin R; Kelker N; Glansdorff N; Piérard A J Bacteriol; 1980 Jan; 141(1):58-66. PubMed ID: 6243630 [TBL] [Abstract][Full Text] [Related]
20. Role of transcriptional regulation and enzyme inactivation in the synthesis of Escherichia coli carbamoylphosphate synthase. Piérard A; Lissens W; Halleux P; Cunin R; Glansdorff N J Bacteriol; 1980 Jan; 141(1):382-5. PubMed ID: 6153385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]